Kontakt
Institut für Statistik
Ludwigstr. 33
80539 München
Ludwigstr. 33
80539 München
Raum:
L 142
Telefon:
+49 89 2180 3925
E-Mail:
rodemann@stat.uni-muenchen.de
Website:
Google Scholar
Website:
Github
Website:
ResearchGate
Sprechstunde:
Nach Vereinbarung
Personal Website: www.julian-rodemann.de
Teaching
- Causality (Exercise, summer 23)
- Statistics for Geosciences (Exercise, winter 21/22, Lecture and exercise winter 22/23)
- Wahrscheinlichkeitstheorie und Inferenz I (Probability Theory and Inference 1, exercise, winter 21/22)
- Wirtschafts- und Sozialstatistik (economic and social statistics, lecture/exercise, winter 21/22 and winter 22/23)
- Statistik IV im Nebenfach (statistics as minor IV, lecture/exercise, summer 22)
- Wahrscheinlichkeitstheoretische Grundlagen (basic probability theory, exercise, summer 22)
Research Interests
- Imprecise Probabilities
- Generalized Bayes
- Imprecise Gaussian Processes
- Neighborhood Models
- Robust Surrogates in Bayesian Optimization
- Superset Learning/Inference
- Weak Supervision
- (Causal Inference)
Publications
- Julian Rodemann, Jann Goschenhofer, Emilio Dorigatti, Thomas Nagler, Thomas Augustin (2023): Approximately Bayes-Optimal Pseudo Label Selection. 39th Conference on Uncertainty in Artificial Intelligence (UAI), Pittsburgh, USA. Proceedings of Machine Learning Research (to appear).
- Christoph Jansen, Georg Schollmeyer, Hannah Blocher, Julian Rodemann, Thomas Augustin (2023): Robust Statistical Comparison of Random Variables with Locally Varying Scale of Measurement. 39th Conference on Uncertaint in Artificial Intelligence (UAI), Pittsburgh, USA. Proceedings of Machine Learning Research (to appear).
- Julian Rodemann, Christoph Jansen, Georg Schollmeyer, Thomas Augustin (2023): In All Likelihood(s): Robust Selection of Pseudo-Labeled Data. 13th International Symposium on Imprecise Probabilities: Theories and Applications (ISIPTA), Oviedo, Spain. Proceedings of Machine Learning Research (to appear).
- Julian Rodemann, Dominik Kreiss, Eyke Hüllermeier, Thomas Augustin (2022): Levelwise Data Disambiguation by Cautious Superset Classification. 15th International Conference on Scalable Uncertainty Management (SUM) in Paris, France. Lecture Notes in Artificial Intelligence, Springer.
- Julian Rodemann, Thomas Augustin (2022): Accounting for Gaussian Process Imprecision in Bayesian Optimization. In: Proceedings of the Ninth International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM). Ishikawa, Japan. Lecture Notes on Artificial Intelligence, Springer.
Talks
- Julian Rodemann (2023): Learning Under Weak Supervision: Insights from Decision Theory. Young Statistician’s
Lecture Series (YSLS). International Biometric Society (IBS) Early Career Working Group, Germany
- Julian Rodemann, Thomas Augustin (2022): Towards Prior-Mean-Robust Bayesian Optimization. DAGStat - Sixth Joint Statistical Meeting. Hamburg, Germany. (Abstract)
- Julian Rodemann, Thomas Augustin (2022): A Deep Dive Into BO Sensitivity and PROBO. Young Statistician's Lecture Series (YSLS). IBS Early Career Working Group, Germany.
- Julian Rodemann, Dominik Kreiss, Thomas Augustin, Eyke Hüllermeier (2022): Work In Progress: Levelwise Data Disambiguation by Cautious Superset Classification. Annual Summer Retreat, Department of Statistics.
- Julian Rodemann: Clustering lifecycles. Villigst Machine Learning Workshop hosted by Max-Planck-Institute
(MPI) For Intelligent Systems in Tübingen, Germany.
Fachstudienberatung Bachelor (Hauptfach) Statistik und Data Science (PO 2021/2010)
Bitte vereinbaren Sie einen Termin per Mail oder stellen Ihre Fragen direkt: rodemann@stat.uni-muenchen.de
Research
Downloads
- rodemann-abstract-yss-dagstat (114 KByte)
- rodemann-talk-dagstat-2022 (1 MByte)
- summer_retreat_talk_21-1 (1 MByte)
- talk_dagstat_22 (1 MByte)
- talk-summer-retreat-22 (718 KByte)
- talk_ysls_ibs_may_2022 (2 MByte)