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LMU | Bayesian Optimization
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LMU| Bayesian Optimization
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Bayesian Optimization
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LMU

Bayesian Optimization

Iter = 3, Gap = 3.8848e-01
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Bayesian Optimization

Iter = 4, Gap = 3.8848e-01
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Bayesian Optimization
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LMU| Bayesian Optimization i)
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LMU | Gaussian Processes - Intuition
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Functional GP regression: Three functions drawn from prior (a) and
posterior (b) GP. Image credits: [Rasmussen, 2003].
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LMU

Gaussian Processes — Prior Components

(GP(mo(x), ko(x, X))

How to specify m(-), 8, 0% and k(-,-)
in absence of prior knowledge?

7/37



LMU

Gaussian Processes — Prior Components

(GP(mo(x), ko(x, X))

And: Do they even matter?
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LMU| Setup

® We randomly select 50 synthetic test functions from the R
package smoof [Bossek, 2017], stratified across the covariate
space dimensions 1,2,3,4 and 7.

® For each of them, a sensitivity analysis is conducted with regard
to each of the four prior components.

® 5 functional forms

® 5 mean and kernel parameter specifications (relative deviation
from global mean)

® we control for interaction effects

® The initial design of size n;,;; = 10 is randomly sampled anew for
each of the R = 40 BO repetitions with T = 20 iterations each.
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LMU

Results

® Mean parameters influence convergence the most, followed by

the kernel’s functional form.

® Mean functional form and Kernel parameters play a
(relatively) negligible role.
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LIMU|| Prior near-ignorance models

® |dea: Use set of 6, instead of precise 6,,. Fully specify the other
components.

e [Mangili, 2015] proposes imprecise Gaussian processes

1+M
{QP (Mh, ko(x,x") + + ) ch=4+1,M> 0} ,
c
given a base kernel kg(x, x") and a degree of imprecision ¢ > 0.

— results in a set of posteriors whose upper and lower mean
estimates [i(x)c, fi(x)c can be derived

Note: See [Benavoli and Zaffalon, 2015] for more on imprecise Gaussian
processes and prior near-ignorance. 16 /3
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LIMIU| Generalized Lower Confidence Bound (GLCB)

o LCB(x) = —fi(x)+ 7+ /Var(u(x))
N e’

“classical” uncertainty

© GLCB(x) = —fi(x)+7 - \/Var(u(x)) +p- (E(x)e — p(x)c)
—_——— ~ -

“classical” uncertainty prior-induced imprecision
® 7 is the degree of risk-aversion
® o is the degree of ambiguity-aversion
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LIMIU| Generalized Lower Confidence Bound (GLCB)

Notably, fi(x) — fi(x) simplifies to an expression only dependent on
predictive kernels k, = [kg(x, x1), ..., ko(x, x,)] T, the base kernel
matrix K, (from training) and the degree of imprecision c. For some!
values of ¢ (depending on observations):

ﬁ(x)—@(x)z(l—klso(;—iﬂsik_ WYy

21 /37
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LIMIU| Generalized Lower Confidence Bound (GLCB)

For sufficiently high c, the model imprecision fi(x) — fi(x) even
simplifies further:

i) — ) = 26 == ©)

In this case, GLCB's hyperparameters p and c collapse to one.
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LIMU| Application in Material Science

Experimental set-up of graphene production: " The preparation of a sample
to be irradiated requires about one week.” [Kotthoff, 2019]

Image credits: Lars Kotthoff, University of Wyoming 24 /37



LMU| GLCB — Results

s
=
B
g
&
7

g
3

4

g
=

Acquisition Function

- GLCB-1-50
- GLCB-1-100
- GLCB-10-100

Best Target Value

§
3

M

§ LTI L[]
.
EENENEI SENNNNN] ANERREE]
Ll L

Evaluations

BO with GLCB on Graphene function. GLCB-1-50 means GLCB with
p =1, c =50. Data source: [Wahab et al., 2020].
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LMU| Discussion

® |imitations
® robust only with regard to possible misspecification of the mean
function parameter given a constant trend
® how to specify c?
® Venues for future work
® |ocally

® multivariate extensions
® Can we ensure |S§—i'| < 1+ g such that hyperparameters c and p
collapse to one?

® globally

® |mprecise probabilities offer vivid framework to represent
ignorance in surrogate-assisted derivative-free optimization

27 / 37



LMU)| Discussion L

® Thanks a lot for your attention!

® Feel free to try out PROBO yourself:
https://github.com/rodemann/gp-imprecision-in-bo

® \We are looking forward to your feedback and comments of any
kind!
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LMU| Mean Optimization Path

Definition (Mean Optimization Path)

Given R repetitions of Bayesian optimization applied on a test
function W(x) with T iterations each, let W(x*), . be the best
incumbent target value at iteration t € {1,..., T} from repetition
r€{1,...,R}. The elements

R
1
MOP: = — D U(x),
r=1

shall then constitute the T-dimensional vector MOP, which we call
mean optimization path (MOP) henceforth.
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LMU|| Accumulated Difference of Mean Optimization Pathg

Definition (Accumulated Difference of MOPs)

Consider an experiment comparing S different prior specifications on a
test function with R repetitions per specification and T iterations per
repetition. Let the results be stored in a T x S-matrix of mean
optimization paths for iterations t € {1, ..., T} and prior specification
se€{1,...,S} (e.g. constant, linear, quadratic etc. trend as mean
functional form) with entries MOP; ; = lRZle V(x*),+s. The
accumulated difference (AD) for this experiment shall then be:

.
AD=Y" <msax MOP, ; — min MOPt,S> .

t=1
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LMU | Results

Mean Kernel Mean Kernel
functional form | functional form || parameters | parameters
42.49 68.20 77.91 11.40

Table: Sum of relative ADs of all 50 MOPs per prior specification.
Comparisons between mean and kernel are more valid than between
functional form and parameters.
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LMU| Upper and lower mean estimates

In order to derive upper and lower bounds for the mean estimate, let
ko(x, x") be a kernel function as defined in [Rasmussen, 2003]. The
finitely positive semi-definite matrix K, is then formed by applying
ko(x,x") on the training data vector x € X

Kn = [k9(X17XJI)]U (3)

Let x be a scalar input of test data, whose f(x) is to be predicted.
Then k, = [ko(x, x1), ..., ko(x, x,)] " is the vector of covariances
between x and the training data. Furthermore, name the training
target vector y and define s, = K;ll,, as well as Sy = 1,,TK;11,,.
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LMU| Upper and lower mean estimates

Then [Mangili, 2015] shows that if || < 14 £

00 = kTK Yy 1 (1 ks Shy 1 L kesu
PRAY IR )S_y+C S, (4)
T L T
i) = kTKly + (1 kTs) Sy — Lo kesd g
Sk Sk
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If1er] > 1+ ¢

— T 1—k/
Ax) = kTKly + (1 — kTs) 3y xSk (g)
S, S
T, -1 T SkTy
(x) = kT K Yy + (1= k] sy) (7)

c+ Sy
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