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Note: If not otherwise stated, all figures are based on own computations using
geplot? [Wickham, 2016] smoof [Bossek 2017] and mlr (3)MBO [Bischl et al.. 2017}
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BO: Some Applications

Hyperparamter-tuning, e.g. AlphaGo [Chen et al., 2018]
Engineering [Frazier and Wang, 2016] [Jones et al., 1998]
Cognitive science [Shi et al., 2013]

Climate modeling [Abbas et al., 2014]

Drug discovery [Pyzer-Knapp, 2018]

m “prioritizing molecules within the discovery process”
Or more recently COVID-19 detection [Awal et al., 2021]
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Gaussian Processes

Definition (Gaussian Process Regression)

A function f(x) is generated by a Gaussian process

GP (m(x), k(x, x")) if for any finite set of data points

{x1, ..., xn}, the associated vector of function values

f = (f(x1), ..., f(xy)) has a multivariate Gaussian distribution:

f~N(p,X).

Note: For a comprehensive introduction to Gaussian process
regression see [Rasmussen, 2003].
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Gaussian Processes - Intuition

Functions drawn from a Gaussian process prior

Image credits: [Moosbauer and Bischl, 2019]
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Gaussian Processes - Intuition

Posterior process after 1 observation

1(x)

Image credits: [Moosbauer and Bischl, 2019]
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Gaussian Processes - Intuition

Posterior process after 3 observations

100

Image credits: [Moosbauer and Bischl, 2019]
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Gaussian Processes — Prior Components

(GP(mo(x), ko(x, X))

How to specify m(-), 8, 0« and k(-,-)
in absence of prior knowledge?
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Gaussian Processes — Prior Components

(GP(mo(x), ko(x, X))

And: Do they even matter?
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Setup

m We randomly select 50 synthetic test functions from the R
package smoof [Bossek, 2017], stratified across the
covariate space dimensions 1,2,3,4 and 7.

m For each of them, a sensitivity analysis is conducted with
regard to each of the four prior components.

m 5 functional forms

m 5 mean and kernel parameter specifications (relative
deviation from global mean)

m we control for interaction effects

m The initial design of size n;,;; = 10 is randomly sampled
anew for each of the R = 40 BO repetitions with T = 20
iterations each.
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Mean Optimization Path

Definition (Mean Optimization Path)

Given R repetitions of Bayesian optimization applied on a test
function W(x) with T iterations each, let W(x*),, be the best
incumbent target value at iteration t € {1,..., T} from
repetition r € {1,..., R}. The elements

R
1
MOP. = - D> U(x),
r=1

shall then constitute the T-dimensional vector MOP, which
we call mean optimization path (MOP) henceforth.
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Example: MOPs for BO on Schwefel Function

Bayesian Optimization of Schwefel Function Mean Function

40 BO runs per Mean with 20 iterations each. o s
Dotted pink line: Global Optimum. ® mix) = 84000
Errorbars show 0.95-Cl of best target value. mix) = 280000
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Accumulated Difference of MOPs

Definition (Accumulated Difference of MOPs)

Consider an experiment comparing S different prior
specifications on a test function with R repetitions per
specification and T iterations per repetition. Let the results be
stored in a T x S-matrix of mean optimization paths for
iterations t € {1, ..., T} and prior specification s € {1, ..., S}
(e.g. constant, linear, quadratic etc. trend as mean functional
form) with entries MOP; ; = %ZL V(x*),ts. The
accumulated difference (AD) for this experiment shall then be:

_
AD=Y" (max MOP, . — min I\/IOPt,S) .
=l S S
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Results

Mean Kernel Mean Kernel
functional form | functional form || parameters | parameters
42.49 68.20 77.91 11.40

Table: Sum of relative ADs of all 50 MOPs per prior specification.
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Prior near-ignorance models

m Idea: Use set of 6, instead of precise 6,,,. Fully specify
the other components.

m [Mangili, 2015] proposes imprecise Gaussian processes

{gP </\/Ih,k9(x,x’)+ 1+CM) :h:il,MZO},

given a base kernel kg(x, x") and a degree of imprecision
c>0.
— results in a set of posteriors whose upper and lower
mean estimates {i(x)c, fi(x)c can be derived

Note: See [Benavoli and Zaffalon, 2015] for an introduction to prior
near-ignorance models.
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L Prior near-ignorance models

Upper and lower mean estimates

In order to derive upper and lower bounds for the mean
estimate, let ky(x, x’) be a kernel function as defined in
[Rasmussen, 2003]. The finitely positive semi-definite matrix
K, is then formed by applying ks(x, x") on the training data
vector X:

Ko = ko)l 1)

Let x be a scalar input of test data, whose f(x) is to be
predicted. Then k, = [ke(x, x1), ..., ko(x, x,)] " is the vector of
covariances between x and the training data. Furthermore,
name the training target vector y and define s, = K1, as
well as Sy = 17K '1,,.
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Upper and lower mean estimates

Then [Mangili, 2015] shows that if || < 14 £

-~ _ ST l—kIS

M(X):kIKn1y+(1—kISk)S—ky+C|S—k| (2)
k k

i - Sy 1—k/s

Ax) = kTR + (1= K] si) 2oy - C% 3
k k
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Upper and lower mean estimates

IF152] > 14 &

T _ T
) = kTK Yy 4 (1— kTs) Sy 4 Lo KeSe g
S, Sy
sly
() = k7K ly + (1 k] s,)—k (5)

c+ S,
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Hedging (1)

m deploy several 1i(x)c, i(x)c for varying ¢ as SMs in
parallel

m return 25 + 1 optima for S imprecise surrogate models
and the precise model
m 25 additionally proposed optima hedge against prior
misspecification
m provides “out-of-the-bag” sensitivity analysis
— stopping criterion?
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Batches (2)

m define initial budget K + 1 of Cores with § = % +1
(I)GP models (as in 1.)

m distribute budget B of total evaluations among M batches

and respective number of Cores C € NM with
C=(K+1, |52, | 52],.)

)
m after each m € M dismiss worst & models
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Generalized Lower Confidence Bound (GLCB)

m LCB(x) = —fi(x)+ 7/ Var(u(x))
“classical” uncertainty
m GLCB(x) = —fi(x) + 7 \/Var(u(x)) +p- (A(x)c — p(x)c)
N———— N———

“classical” uncertainty prior-induced imprecision

m 7 is the degree of risk-aversion
m p is the degree of ambiguity-aversion
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Generalized Lower Confidence Bound (GLCB)

Notably, (x) — fi(x) simplifies to an expression only
dependent on predictive kernels k, = [ko(x, x1), ..., ko(X, Xp)
the base kernel matrix K, (from training) and the degree of
imprecision c. If [%*|>1+ £

1",
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Generalized Lower Confidence Bound (GLCB)

For sufficiently high ¢, the model imprecision fi(x) — fi(x)
even simplifies further:

i) — o) = 26 == (7)

In this case, GLCB's hyperparameters p and c collapse to one.
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Application in Material Science

Experimental set-up of graphene production: “The preparation of a
sample to be irradiated requires about one week.” [Kotthoff, 2019]

Image credits: Lars Kotthoff, University of Wyoming
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Results — Hedge (1) and Batch (2)

Batch-Wise Speed Up Parallel Hedging
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Benchmarking results from BO on Graphene quality function. Data
source: [Wahab et al., 2020].
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Results — GLCB (3)

GLoB-1-100 GLCB-1-50 GLCB-10-100

Acquisition Function
]
6LcB-1-50
~ olca-1-100
- GLCB-10-100

Acaisition Function
Lcs
GLoB-1-50

= GLOB-1-100
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Evaluations

BO with GLCB on Graphene function. GLCB-1-50 means GLCB
with p =1, ¢ = 50. Data source: [Wahab et al., 2020].
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Discussion

m Limitations
m robust only with regard to possible misspecification of
the mean function parameter given a constant trend
m how to specify c?
m Venues for future work

m locally
m Can we ensure \ssk—ky| <1+ 5 such that
hyperparameters ¢ and p collapse to one?
m globally
m Imprecise probabilities offer vivid framework to represent
ignorance in surrogate-assisted derivative-free
optimization
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m Thanks a lot for your attention!
m Feel free to try out PROBO yourself: https:
//github.com/rodemann/gp-imprecision-in-bo

m We are looking forward to your feedback and comments
of any kind!


https://github.com/rodemann/gp-imprecision-in-bo
https://github.com/rodemann/gp-imprecision-in-bo
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