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Partly ambiguous data

Figure: Partly ambiguous data.
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A “good” instantiation …

Figure: A “plausible” instantiation...

Image credits: Eyke Hüllermeier
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… that can be explained by a simple model

Figure: ...that can be well-explained by a fitted model.
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A less good instantiation …

Figure: While a less “plausible” instantiation...
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… for which a simple model doesn’t fit well 

Figure: ...results in a worse performing model.
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Optimistic Superset Learning

[Hüllermeier, 2014] introduced Optimistic Superset Loss1

𝐿𝑜𝑝𝑡 (𝑦𝑖 , 𝑌𝑖) = min
𝑦∈𝑌𝑖

𝐿 (𝑦𝑖 , 𝑦), (1)

with 𝐿 (·) a loss function 𝐿 : Y ×Y → R.
Minimizing the corresponding empirical risk is called Optimistic
Superset Learning (OSL).

1See also [Hüllermeier and Cheng, 2015], [Hüllermeier et al., 2019] and
[Lienen and Hüllermeier, 2021]
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Cautious Superset Learning Setup: Classification

Setup

Motivation: Find a singleton representation of set-valued data

Consider the observations O = {(𝑥𝑖 , 𝑌𝑖)}𝑛𝑖=1 ∈
(
X × 2Y

)𝑛
with

categorical Y.

𝑌𝑖 is regarded a superset of a true underlying singleton 𝑦𝑖 ∈ Y.

Let Y = 𝑌1 × 𝑌2 × · · · × 𝑌𝑛 be the Cartesian product of the observed
supersets; denote the number of different observed categories by 𝑞.2

Any singleton vector y = (𝑦1, . . . , 𝑦𝑖 , . . . , 𝑦𝑛)′ ∈ Y is called an
instantiation of the observed set-valued data.

2Notably, 𝑞 ≤ |Y|.
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Cautious Superset Classification

For each y ∈ Y, we find ŷ(h,y) (x) by empirical risk minimization.

We evaluate the so trained model ŷ(h,y) (x) by its empirical risk

R𝑒𝑚𝑝 (h, x, y) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑦 (h,y)
𝑖

(𝑥𝑖), 𝑦𝑖), 𝑦𝑖 ∈ ŷ(h,y) (x), 𝑦𝑖 ∈ y, 𝑥𝑖 ∈ x,

𝐿 (·) again a loss function 𝐿 : Y ×Y → R.
We then consider

y∗R𝑒𝑚𝑝
= argmin

y∈Y
R𝑒𝑚𝑝 (h, x, y) (2)

the most plausible instantiation, given a model, a loss function, and
the (singleton) covariates.
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Cautious Superset Classification

Note that in contrast to Optimistic Superset Learning
[Hüllermeier, 2014], equation (2) requires estimating 𝑞𝑛 models.

=⇒ Restrictions on Y and/or 2Y needed, e.g. clustering and homogenous
treatment of clusters
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Narrowing Down Supersets

Consider the 0/1-loss

𝐿 (𝑦 (h,y)
𝑖

(𝑥𝑖), 𝑦𝑖) = 𝐼 (𝑦 (h,y)
𝑖

(𝑥𝑖) ≠ 𝑦𝑖), (3)

𝐼 the indicator function.

We can characterize (the model of) an instantiation y ∈ Y by
𝑛 ·R𝑒𝑚𝑝 (h, x, y), the number of misclassifications, using the 0/1-loss.
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Narrowing Down Supersets

Definition (E-Optimistic Subset)

Let Y be the Cartesian product of the observed supersets as above and
E ∈ N a pre-defined upper bound for classification errors. Then

YE = {y ∈ Y | 𝑛 ·R𝑒𝑚𝑝 (h, x, y) ≤ E} ⊆ Y,

shall be called E−optimistic subset of Y.
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Narrowing Down Supersets

Definition (𝑖-th Consideration Function)

Let 𝑦𝑖 ∈ y ∈ YE be the class of a fixed observation 𝑖 ∈ {1, ..., 𝑛} in an
instantiation y ∈ YE. For varying E, the function

𝑓𝑖 : N→ 2Y

E ↦→ {𝑦 ∈ Y | ∃y ∈ YE : 𝑦 = 𝑦𝑖 , 𝑦𝑖 ∈ y}

shall be called consideration function of observation 𝑖.
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Motivation: Resolving Ties

A “good” instantiation …

Figure: Recall the “good” instantiation...

Image credits: Eyke Hüllermeier
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Motivation: Resolving Ties

A less good instantiation …

Figure: ... and the “bad” one.
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Motivation: Resolving Ties

… that can be explained by a simple model … or which requires a complex model

Figure: Notably, both instantiations can be completely separated.
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Resolving Ties

The total order induced by R𝑒𝑚𝑝 (h, x, y∗) can include ties:

Y∗
E

𝑑𝑒 𝑓
= {y∗ | 𝑛 ·R𝑒𝑚𝑝 (h, x, y∗) = E}

Idea: Use SVMs and relax hyperparameter 𝐶 that controls model
generality in h = (𝐶, h′

𝑟 )′.1

y∗𝐶 = argmin
y∗

argmin
𝐶

{R𝑒𝑚𝑝 (h𝑟 , 𝐶, x, y∗) | y∗ ∈ Y∗
E} (4)

1with remaining hyperparameters h𝑟 .
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Resolving Ties
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Figure: Different instantiations of set-valued observations require different levels
of 𝐶 in order to be classified correctly.
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Application: Simulation
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Figure: Simulation setting: 120 observations in a two-dimensional covariate space.
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Application

Application: Polling Data provided by Civey
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Figure: Results from application on polling data.

(LMU Munich) Cautious Superset Classification 16 / 17 July 9, 2022



Discussion

Contents

1 Optimistic Superset Learning

2 Cautious Superset Learning
Setup: Classification
Main Idea
Narrowing Down Supersets
Resolving Ties

3 Application

4 Discussion

5 Appendix: Induced Hierarchies

6 References

(LMU Munich) Cautious Superset Classification 16 / 17 July 9, 2022



Discussion

Discussion

Future work:
general approaches of “data selection”

e.g. integrate the restrictions on Y and/or Y as side-constraints for
classical OSL.

decision criteria for selecting instantiations

currently lexicographic order
alternatives:
multi-objective optimization =⇒ Pareto front
scalarized objective: weighted sum of E and 𝐶

Questions:

Have you heard of superset learning before?

Anyone working with set-valued observations?
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Appendix: Induced Hierarchies

Hierarchy on Instantiations

Definition (E-Optimistic Subset)

Let Y be the Cartesian product of the observed supersets as above and
E ∈ N a pre-defined upper bound for classification errors. Then

YE = {y ∈ Y | 𝑛 ·R𝑒𝑚𝑝 (h, x, y) ≤ E} ⊆ Y,

shall be called E−optimistic subset of Y.
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Appendix: Induced Hierarchies

Individual Hierarchy

Definition (𝑖-th Consideration Function)

Let 𝑦𝑖 ∈ y ∈ YE be the class of a fixed observation 𝑖 ∈ {1, ..., 𝑛} in an
instantiation y ∈ YE. For varying E, the function

𝑓𝑖 : N→ 2Y

E ↦→ {𝑦 ∈ Y | ∃y ∈ YE : 𝑦 = 𝑦𝑖 , 𝑦𝑖 ∈ y}

shall be called consideration function of observation 𝑖.
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Individual Hierarchy

Proposition

Function 𝑔𝑖 (E) = | 𝑓𝑖 (E) | is monotonically non-decreasing.

Proof.

Let ỹ ∈ YE1 . Definition 3 directly delivers that 𝑛 ·R𝑒𝑚𝑝 (h, x, ỹ) ≤ E1.
With E1 < E2 by assumption, we trivially have 𝑛 ·R𝑒𝑚𝑝 (h, x, ỹ) ≤ E2
=⇒ ỹ ∈ YE2 . Thus, for any two E1, E2 ∈ R with E1 < E2 it holds
YE1 ⊆ YE2 . Since 𝑓𝑖 (E) only contains classes of instantiations in YE, the
assertion follows. □
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Individual Hierarchy

Definition (𝑖-th Preference Function for level E)

Let 𝑦𝑖 ∈ y∗ ∈ Y∗
E
be the class of a fixed observation 𝑖 ∈ {1, ..., 𝑛} in an

instantiation y∗ ∈ Y∗
E
. For a given E, the function

𝑝
(E)
𝑖

: Y → R
𝑦 ↦→ min{𝐶 | 𝐶 = argmin

𝐶

{R𝑒𝑚𝑝 (h𝑟 , 𝐶, x, y∗) | y∗ ∈ Y∗
E ∧ 𝑦 = 𝑦𝑖 ∈ y∗}}

shall be called preference function of observation 𝑖 for subset Y∗
E
.

(LMU Munich) Cautious Superset Classification 17 / 17 July 9, 2022



Appendix: Induced Hierarchies

Individual Hierarchy

Proposition

For any fixed 𝑖, the element-wise composition 𝑝
(E)
𝑖

⊙ 𝑓𝑖 induces a total
order.

Proof.

Since 𝑝
(E)
𝑖

maps to R, we have 𝑝
(E)
𝑖

⊙ 𝑓𝑖 (E) ∈ R𝑑 , where 𝑑 ≤ |Y| is the
dimension of the output of 𝑝 (E)

𝑖
. Since any subset of the total order (R, ≤)

is a total order with the restriction of the total order on the subset, one
single output vector 𝑝 (E)

𝑖
⊙ 𝑓𝑖 (E) ∈ R𝑑 has elements that are totally

ordered. □
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Lienen, J. and Hüllermeier, E. (2021).

Credal self-supervised learning.

Advances in Neural Information Processing Systems, 34:14370–14382.

(LMU Munich) Cautious Superset Classification 17 / 17 July 9, 2022


	Optimistic Superset Learning
	Cautious Superset Learning
	Setup: Classification
	Main Idea
	Narrowing Down Supersets
	Resolving Ties

	Application
	Discussion
	Appendix: Induced Hierarchies
	References

