Work In Progress Talk: Levelwise Data Disambiguation by Cautious Superset Classification

Julian Rodemann ¹ Dominik Kreiss ¹ Eyke Hüllermeier ² Thomas Augustin ¹

¹Dep. of Statistics, LMU Munich

²Dep. of Computer Science, LMU Munich

July 9, 2022

Optimistic Superset Learning

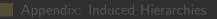
- Cautious Superset Learning
 - Setup: Classification
 - Main Idea
 - Narrowing Down Supersets
 - Resolving Ties
- Application
- Discussion
- Appendix: Induced Hierarchies

Cautious Superset Learning

- Setup: Classification
- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion



Optimistic Superset Learning

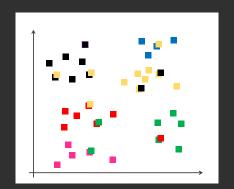


Figure: Partly ambiguous data.

Optimistic Superset Learning

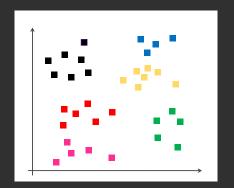


Figure: A "plausible" instantiation...

Image credits: Eyke Hüllermeier

(LMU Munich)

Cautious Superset Classification 4 / 17

July 9, 2022

Optimistic Superset Learning

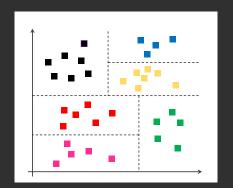


Figure: ...that can be well-explained by a fitted model.

Optimistic Superset Learning

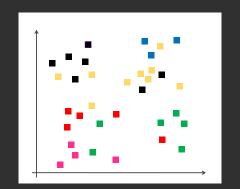


Figure: While a less "plausible" instantiation...

Optimistic Superset Learning

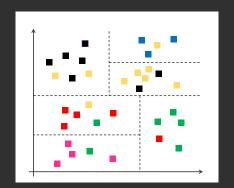


Figure: ...results in a worse performing model.

[Hüllermeier, 2014] introduced Optimistic Superset Loss¹

$$L_{opt}(\hat{y}_i, Y_i) = \min_{y \in Y_i} L(\hat{y}_i, y), \tag{1}$$

with $L(\cdot)$ a loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

 Minimizing the corresponding empirical risk is called Optimistic Superset Learning (OSL).

(LMU Munich)

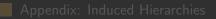
¹See also [Hüllermeier and Cheng, 2015], [Hüllermeier et al., 2019] and [Lienen and Hüllermeier, 2021]

Optimistic Superset Learning

- Cautious Superset Learning
 - Setup: Classification
 - Main Idea
 - Narrowing Down Supersets
 - Resolving Ties

Application

Discussion



Cautious Superset Learning Setup: Classification

- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion

Setup

- Motivation: Find a singleton representation of set-valued data
- Consider the observations $\mathcal{O} = \{(x_i, Y_i)\}_{i=1}^n \in (\mathcal{X} \times 2^{\mathcal{Y}})^n$ with categorical \mathcal{Y} .
- Y_i is regarded a superset of a true underlying singleton $y_i \in \mathcal{Y}$.
- Let $\mathbf{Y} = Y_1 \times Y_2 \times \cdots \times Y_n$ be the Cartesian product of the observed supersets; denote the number of different observed categories by q^2 .
- Any singleton vector y = (y₁,..., y_i,..., y_n)' ∈ Y is called an *instantiation* of the observed set-valued data.

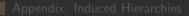
²Notably, $q \leq |\mathcal{Y}|$. (LMU Munich)

Cautious Superset Learning

- Setup: Classification
- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion



Cautious Superset Classification

- For each $y \in Y$, we find $\hat{y}^{(h,y)}(x)$ by empirical risk minimization.
- \blacksquare We evaluate the so trained model $\hat{y}^{(h,y)}(x)$ by its empirical risk

$$\mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} L(\hat{y}_i^{(\mathbf{h}, \mathbf{y})}(x_i), y_i), \hat{y}_i \in \hat{\mathbf{y}}^{(\mathbf{h}, \mathbf{y})}(\mathbf{x}), y_i \in \mathbf{y}, x_i \in \mathbf{x},$$

 $L(\cdot)$ again a loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$. • We then consider

$$\mathbf{y}_{\mathcal{R}_{emp}}^{*} = \operatorname*{arg\,min}_{\mathbf{y}\in\mathbf{Y}} \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y})$$
(2)

the most plausible instantiation, given a model, a loss function, and the (singleton) covariates.

Cautious Superset Classification

- Note that in contrast to Optimistic Superset Learning [Hüllermeier, 2014], equation (2) requires estimating qⁿ models.
 - \implies Restrictions on ${\bf Y}$ and/or $2^{\mathcal{Y}}$ needed, e.g. clustering and homogenous treatment of clusters

Optimistic Superset Learning

Cautious Superset Learning

- Setup: Classification
- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion

Narrowing Down Supersets

■ Consider the 0/1-loss

$$L(\hat{y}_{i}^{(\mathbf{h},\mathbf{y})}(x_{i}), y_{i}) = I(\hat{y}_{i}^{(\mathbf{h},\mathbf{y})}(x_{i}) \neq y_{i}),$$
(3)

I the indicator function.

■ We can characterize (the model of) an instantiation $\mathbf{y} \in \mathbf{Y}$ by $n \cdot \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y})$, the number of misclassifications, using the 0/1-loss.

Narrowing Down Supersets

Definition (&-Optimistic Subset)

Let Y be the Cartesian product of the observed supersets as above and $\mathcal{E} \in \mathbb{N}$ a pre-defined upper bound for classification errors. Then

$$\mathbf{Y}_{\mathcal{E}} = \{ \mathbf{y} \in \mathbf{Y} \mid n \cdot \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y}) \le \mathcal{E} \} \subseteq \mathbf{Y},$$

shall be called &-optimistic subset of \mathbf{Y} .

Narrowing Down Supersets

Definition (*i*-th Consideration Function)

Let $y_i \in \mathbf{y} \in \mathbf{Y}_{\mathcal{E}}$ be the class of a fixed observation $i \in \{1, ..., n\}$ in an instantiation $\mathbf{y} \in \mathbf{Y}_{\mathcal{E}}$. For varying \mathcal{E} , the function

$$f_i \colon \mathbb{N} \to 2^{\mathcal{Y}}$$

$$\mathcal{E} \mapsto \{ y \in \mathcal{Y} \mid \exists \mathbf{y} \in \mathbf{Y}_{\mathcal{E}} : y = y_i, y_i \in \mathbf{y} \}$$

shall be called *consideration function* of observation *i*.

Optimistic Superset Learning

Cautious Superset Learning

- Setup: Classification
- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion

Motivation: Resolving Ties

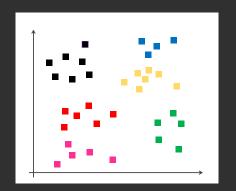


Figure: Recall the "good" instantiation...

Image credits: Eyke Hüllermeier

(LMU Munich)

Cautious Superset Classification 12 / 17

July 9, 2022

Motivation: Resolving Ties

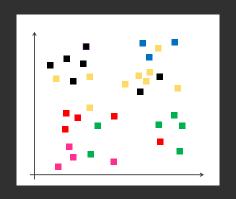


Figure: ... and the "bad" one.

Resolving Ties

Motivation: Resolving Ties

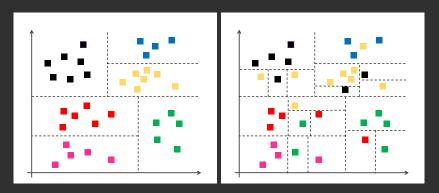


Figure: Notably, both instantiations can be completely separated.

Resolving Ties

The total order induced by $\mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y}^*)$ can include ties:

$$\mathbf{Y}_{\mathcal{E}}^{*} \stackrel{def}{=} \{ \mathbf{y}^{*} \mid n \cdot \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y}^{*}) = \mathcal{E} \}$$

■ Idea: Use SVMs and relax hyperparameter *C* that controls model generality in $\mathbf{h} = (C, \mathbf{h}'_r)'$.¹

$$\mathbf{y}_{C}^{*} = \operatorname*{arg\,min}_{\mathbf{y}^{*}} \operatorname*{arg\,min}_{C} \{\mathcal{R}_{emp}(\mathbf{h}_{r}, C, \mathbf{x}, \mathbf{y}^{*}) \mid \mathbf{y}^{*} \in \mathbf{Y}_{\mathcal{E}}^{*} \}$$
(4)

¹with remaining hyperparameters \mathbf{h}_r .

Resolving Ties

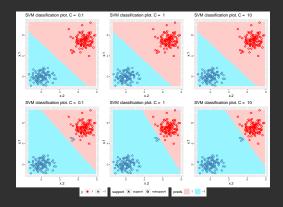


Figure: Different instantiations of set-valued observations require different levels of *C* in order to be classified correctly.

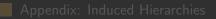


Cautious Superset Learning

- Setup: Classification
- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion



Application: Simulation

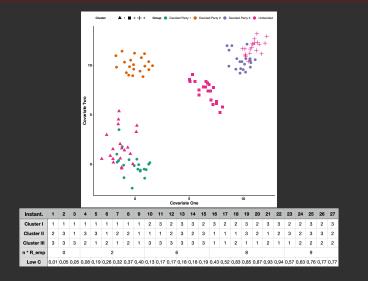


Figure: Simulation setting: 120 observations in a two-dimensional covariate space.

(LMU Munich)

Cautious Superset Classification 15 / 17

July 9, 2022

Application

Application: Polling Data provided by Civey

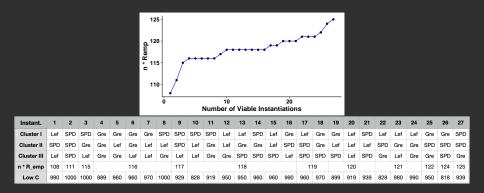


Figure: Results from application on polling data.



Cautious Superset Learning

- Setup: Classification
- Main Idea
- Narrowing Down Supersets
- Resolving Ties

Application

Discussion

Discussion

Future work:

- general approaches of "data selection"
 - \blacksquare e.g. integrate the restrictions on $\mathcal Y$ and/or $\mathbf Y$ as side-constraints for classical OSL.
- decision criteria for selecting instantiations
 - currently lexicographic order
 - alternatives:
 - multi-objective optimization Pareto front
 - **\blacksquare** scalarized objective: weighted sum of \mathscr{E} and C

Questions:

- Have you heard of superset learning before?
- Anyone working with set-valued observations?



- Cautious Superset Learning
 - Setup: Classification
 - Main Idea
 - Narrowing Down Supersets
 - Resolving Ties
 - Application
- Discussion

Appendix: Induced Hierarchies

Hierarchy on Instantiations

Definition (&-Optimistic Subset)

Let Y be the Cartesian product of the observed supersets as above and $\mathcal{E} \in \mathbb{N}$ a pre-defined upper bound for classification errors. Then

$$\mathbf{Y}_{\mathcal{E}} = \{ \mathbf{y} \in \mathbf{Y} \mid n \cdot \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \mathbf{y}) \le \mathcal{E} \} \subseteq \mathbf{Y},$$

shall be called &-optimistic subset of Y.

Definition (*i*-th Consideration Function)

Let $y_i \in \mathbf{y} \in \mathbf{Y}_{\mathcal{E}}$ be the class of a fixed observation $i \in \{1, ..., n\}$ in an instantiation $\mathbf{y} \in \mathbf{Y}_{\mathcal{E}}$. For varying \mathcal{E} , the function

$$f_i \colon \mathbb{N} \to 2^{\mathcal{Y}}$$

$$\mathcal{E} \mapsto \{ y \in \mathcal{Y} \mid \exists \mathbf{y} \in \mathbf{Y}_{\mathcal{E}} : y = y_i, y_i \in \mathbf{y} \}$$

shall be called *consideration function* of observation *i*.

Proposition

Function $g_i(\mathcal{E}) = |f_i(\mathcal{E})|$ is monotonically non-decreasing.

Proof.

Let $\tilde{\mathbf{y}} \in \mathbf{Y}_{\mathcal{E}_1}$. Definition 3 directly delivers that $n \cdot \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \tilde{\mathbf{y}}) \leq \mathcal{E}_1$. With $\mathcal{E}_1 < \mathcal{E}_2$ by assumption, we trivially have $n \cdot \mathcal{R}_{emp}(\mathbf{h}, \mathbf{x}, \tilde{\mathbf{y}}) \leq \mathcal{E}_2$ $\implies \tilde{\mathbf{y}} \in \mathbf{Y}_{\mathcal{E}_2}$. Thus, for any two $\mathcal{E}_1, \mathcal{E}_2 \in \mathbb{R}$ with $\mathcal{E}_1 < \mathcal{E}_2$ it holds $\mathbf{Y}_{\mathcal{E}_1} \subseteq \mathbf{Y}_{\mathcal{E}_2}$. Since $f_i(\mathcal{E})$ only contains classes of instantiations in $\mathbf{Y}_{\mathcal{E}}$, the assertion follows.

Definition (*i*-th Preference Function for level \mathcal{E})

Let $y_i \in \mathbf{y}^* \in \mathbf{Y}^*_{\mathcal{E}}$ be the class of a fixed observation $i \in \{1, ..., n\}$ in an instantiation $\mathbf{y}^* \in \mathbf{Y}^*_{\mathcal{E}}$. For a given \mathcal{E} , the function

$$p_i^{(\mathcal{E})} \colon \mathcal{Y} \to \mathbb{R}$$
$$y \mapsto \min\{C \mid C = \underset{C}{\operatorname{arg\,min}} \{\mathcal{R}_{emp}(\mathbf{h}_r, C, \mathbf{x}, \mathbf{y}^*) \mid \mathbf{y}^* \in \mathbf{Y}_{\mathcal{E}}^* \land y = y_i \in \mathbf{y}^*\}\}$$

shall be called *preference function* of observation *i* for subset \mathbf{Y}_{g}^{*} .

Proposition

For any fixed *i*, the element-wise composition $p_i^{(\&)} \odot f_i$ induces a total order.

Proof.

Since $p_i^{(\&)}$ maps to \mathbb{R} , we have $p_i^{(\&)} \odot f_i(\&) \in \mathbb{R}^d$, where $d \leq |\mathcal{Y}|$ is the dimension of the output of $p_i^{(\&)}$. Since any subset of the total order (\mathbb{R}, \leq) is a total order with the restriction of the total order on the subset, one single output vector $p_i^{(\&)} \odot f_i(\&) \in \mathbb{R}^d$ has elements that are totally ordered.

- Cautious Superset Learning
 - Setup: Classification
 - Main Idea
 - Narrowing Down Supersets
 - Resolving Ties
 - Application
- Discussion
- Appendix: Induced Hierarchies

References I

Hüllermeier, E. (2014).

Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization.

International Journal of Approximate Reasoning, 55:1519–1534.

Hüllermeier, E. and Cheng, W. (2015).

Superset learning based on generalized loss minimization.

In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 260–275. Springer.

References II

Hüllermeier, E., Destercke, S., and Couso, I. (2019).

Learning from imprecise data: adjustments of optimistic and pessimistic variants.

In International Conference on Scalable Uncertainty Management, pages 266–279. Springer.

Lienen, J. and Hüllermeier, E. (2021).
Credal self-supervised learning.
Advances in Neural Information Processing Systems, 34:14370–14382.