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Abstract

In this paper we develop a linear programming method for detecting stochastic

dominance for random variables with values in a partially ordered set (poset) based

on the upset-characterization of stochastic dominance. The proposed detection-

procedure is based on a descriptively interpretable statistic, namely the maximal

probability-di�erence of an upset. We show how our method is related to the general

task of maximizing a linear function on a closure system. Since closure systems are

describable via its valid formal implications, we can use here ingredients of formal

concept analysis. We also address the question of inference via resampling and via

conservative bounds given by the application of Vapnik-Chervonenkis theory, which

also allows for an adequate pruning of the envisaged closure system that allows for

the regularization of the test statistic (by paying a price of less conceptual rigor).

We illustrate the developed methods by applying them to a variety of data examples,

concretely to multivariate inequality analysis, item impact and di�erential item

functioning in item response theory and to the analysis of distributional di�erences

in spatial statistics. The power of regularization is illustrated with a data example

in the context of cognitive diagnosis models.

Keywords: stochastic dominance, multivariate stochastic order, linear pro-

gramming, closure system, formal concept analysis, formal implication, Vapnik-

Chervonenkis theory, regularization.

1 Introduction

Stochastic (�rst order) dominance plays an important role in a huge variety of disciplines
like for example welfare economics (cf., e.g., [Arndt et al., 2012, 2015]), decision theory
(cf., e.g., [Levy, 2015]), portfolio analysis (cf., e.g., [Kuosmanen, 2004]), nonparametric
item response theory (IRT, cf., e.g., [Scheiblechner, 2007]), medicine (cf., e.g., [Leshno and
Levy, 2004]), toxicology (cf., e.g., [Davidov and Peddada, 2013]) or psychology (cf., e.g.,
[Levy and Levy, 2002]) to cite just a few. Most treatments of stochastic dominance are
devoted to the univariate case with emphasis also on higher order stochastic dominance
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or to the classical multivariate case where one has Rd-valued random variables with the
natural ordering ≤= {(x, y) ∈ Rd × Rd | ∀i ∈ {1, . . . , d} : xi ≤ yi}. In this paper we treat
the general case of random variables that have values in a partially ordered set1 (poset)
V = (V,≤).

Detecting stochastic dominance in this general case is especially interesting in the
context of multivariate inequality or poverty analysis (cf., [Alkire et al., 2015]) in the
situation where one has more dimensions of inequality that are additionally possibly only
of a partial ordinal scale of measurement. One thinkable dimension with an only partially
ordered scale of measurement is the dimension education, because di�erent highest
educational achievements may be incomparable due to di�erent speci�cs of di�erent
courses of education. In this paper, the example of multivariate inequality analysis will
serve as a prototypic example of multivariate stochastic dominance analysis.

In contrast to the simple univariate case, for random variables with values in a parti-
ally ordered set the notion of stochastic dominance cannot be simply described with the
distribution function, anymore2. For two random variables X : Ω −→ V and Y : Ω −→ V
with values in a partially ordered set (V,≤), one says that X is (weakly) stochastically
smaller than Y , denoted by X ≤SD Y , if there exist random variables X ′ and Y ′ on a

further probability space (Ω′,F ′, P ′) with X
d
= X ′, Y

d
= Y ′ and P ′(X ′ ≤ Y ′) = 1. The

property of stochastic dominance can be characterized by three essentially equivalent, more
constructive statements: The random variable X is stochastically smaller than the random
variables Y if one of the three following conditions is satis�ed3:

i) P (X ∈ A) ≤ P (Y ∈ A) for every (measurable) upset A ⊆ V

ii) E(u ◦ X) ≤ E(u ◦ Y ) for every bounded non-decreasing Borel-measurable4 function
u : V −→ R

iii) It is possible to obtain the density5 fX from the density fY by transporting probability
mass from values v to smaller values v′ ≤ v .

In this paper we will deal with the problem of detecting stochastic dominance between
two random variables X and Y for which one has observed an i.i.d. sample (x1, . . . , xnx)

1This includes especially the multivariate case of Rd where the natural order x ≤ y ⇐⇒ ∀i ∈
{1, . . . , d} : xi ≤ yi is used. Note also that every �nite poset (V,≤) can mathematically be represented
as a multivariate case where the dimension equals the order dimension of (V,≤), cf. [Dushnik and Miller,
1941, Trotter, 2001].

2If one would rely on the distribution function in the multivariate case, then one would get another
order, the so-called lower orthant or upper orthant order, cf., e.g., [Müller and Stoyan, 2002].

3The equivalence between (ii) and (i) was shown by Lehmann [1955] and independently proved by Le-
vhari et al. [1975]. The equivalence between (iii) and (i) is a consequence of Strassen's Theorem ([Strassen,
1965]), see Kamae et al. [1977].

4Here, we have to assume that (V,≤) can be equipped with an appropriate topology that makes it a
partially ordered polish space.

5This statement is of course only equivalent if the densities fX and fY actually exist.
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of the unknown random variable X and an i.i.d. sample (y1, . . . , yny) of the unknown
random variable Y . Actually, one would be interested in detecting X ≤SD Y , but one does
not exactly know the true law of X and Y . So, here we will deal with detecting empirical
stochastic dominance between X and Y , denoted by X ≤ŜD Y , where the true laws of
X and Y are replaced by the corresponding empirical laws. The problem of statistical
inference that is concerned with the question of how stochastic dominance w.r.t. the
empirical laws can be translated to stochastic dominance w.r.t. the true laws will also
be discussed in this paper. The typical situation in this paper will be the analysis of
di�erences between two subpopulations of some population. The typical subpopulations
analyzed in this paper will be subpopulations of male and female persons. Here, we think
of the random variable X as the outcome of a random sample from the subpopulation of
the male, and Y as a random sample from the subpopulation of the female persons. Note
that in the formal de�nition of stochastic dominance one compares random variables on
the same probability space (Ω,F , P ). In our case of comparing subpopulations we can
ensure that X and Y are random variables on the same underlying probability space by
thinking of jointly sampling from the male and the female subpopulation. Note that the
notion of stochastic dominance does not rely on the possible dependencies between X
and Y , because all terms involved in the characterizing properties i) − iii) of stochastic
dominance only rely on the marginal distribution of X and Y . Note further that the
de�nition of stochastic dominance could thus be simply extended to random variables
living on di�erent probability spaces. Thus, also for the replacement of the true laws
by empirical laws, di�erent sample sizes for the male and the female samples would not
introduce any problem, here.

For detecting stochastic dominance in the above sense, we will make substantial use
of the upset-characterization i). The characterization via a mass transfer can also be
used to check for stochastic dominance, see, e.g., Mosler and Scarsini [1991] (for empirical
applications see, e.g., [Arndt et al., 2012, 2013]), while an alternative approach would
be to make use of a network �ow formulation of the problem, as outlined in Preston
[1974] or Hansel and Troallic [1978] and then check for dominance via computation of
the maximum �ow. The main reason for putting emphasis on the upset approach is that
with this approach we could not only check for stochastic dominance, but we will also
get additionally some well-interpretable statistic for free, upon which we can also base an
attempt to do inference. Beyond this, the family of all upsets of a given poset is a well
understood closure system6 and a natural question is then, how the linear programming
approach outlined here, can be generalized to the case of arbitrary closure systems.

The paper is structured as follows: In Section 2 we brie�y introduce basic mathematical
concepts of partially ordered sets, complete lattices and formal concept analysis needed in
the paper. Section 3 develops and analyses a linear program for detecting �rst order sto-

6A closure system S is a family of subsets of a space Ω that contains Ω and is closed under arbitrary
intersections.
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chastic dominance for random variables with values in a poset. In Section 4 we generalize
the linear programming approach to optimization on closure systems. Statistical inference
for the developed methods, especially the application of Vapnik-Chervonenkis theory, pos-
sible regularization and characterizations of the Vapnik-Chervonenkis dimension of selected
closure systems (as well as concretely computing the Vapnik-Chervonenkis dimension) are
treated in Section 5. Examples of application, ranging from inequality analysis based on
stochastic dominance to a geometrical generalization of the Kolmogorov-Smirnov test for
spatial statistics are given in Section 6, while Section 7 concludes.

2 Mathematical preliminaries

In this section, we very brie�y introduce elementary basics of partially ordered sets and
of formal concept analysis. A far more detailed introduction to partially ordered sets can
be found in Davey and Priestley [2002], which also gives a short introduction to formal
concept analysis. An introduction into formal concept analysis can be found in Ganter
and Wille [2012]. The concepts of formal concept analysis are actually only needed for the
optimization problems on general closure systems indicated in Section 4, the reader only
interested in the problem of detecting �rst order stochastic dominance can skip Section 2.2.

2.1 Ordered sets and lattices

De�nition 1 (posets and lattices). A partially ordered set (poset) V = (V,≤) is a
pair of a set V and a binary relation ≤ on V that is re�exive transitive and antisymmetric.
A poset (V,≤) is called linearly ordered, if every two elements x, y of V are comparable
(meaning that x ≤ y or y ≤ x). For two di�erent elements x, y of a poset V we say that y
is an upper neighbor of x (or that x is a lower neighbor of y), and denote this by xl y, if
x ≤ y and if there is no further element z ∈ V (di�erent from x and y) with x ≤ z ≤ y.

A lattice L = (L,≤) is a poset such that every set {x, y} of two elements x, y ∈ L
has a least upper bound and a greatest lower bound. A lattice is called complete, if every
arbitrary set M has a least upper bound and a greatest lower bound. The least upper bound
of a set M is called supremum or join of M and it is denoted with

∨
M . The greatest

lower bound of a set M is called in�mum or meet of M and it is denoted with
∧
M . An

element x of a complete lattice (L,≤) is called join-irreducible if for arbitrary subsets
B ⊆ L from x =

∨
B it follows x = b for some b ∈ B. The set of all join-irreducible

elements of a poset V is denoted with J (V).

De�nition 2 (upset and downset, principal ideal and principal �lter). Let (V,≤) be a
poset. A set V ⊆ M is called an upset (or �lter) if we have ∀x, y ∈ V : x ≤ y & x ∈
M =⇒ y ∈ M . A subset M ⊆ V is called downset (or ideal) if ∀x, y ∈ V : x ≤ y & y ∈
M =⇒ x ∈ M . The set of all upsets of a poset (V,≤) is denoted with U((V,≤)) and the
set of all downsets is denoted with D((V,≤)). An upset of the form ↑ x := {y ∈ V | y ≥ x}
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with x ∈ V is called a principal �lter. A downset of the form ↓ x := {y ∈ V | y ≤ x}
with x ∈ V is called a principal ideal.

Remark 1. The complement of an upset is a downset and the complement of a downset
is an upset.

De�nition 3 (chain, antichain and width). Let (V,≤) be a poset. A set M ⊆ V is called
a chain if every two arbitrary elements x and y of M are comparable (meaning that x ≤ y
or y ≤ x). A subset M of a poset (V,≤) is called an antichain if every two arbitrary
di�erent elements x and y of M are incomparable (meaning that neither x ≤ y nor y ≤ x).
The width of a �nite poset (V,≤) is the maximal cardinality of an antichain of (V,≤).

Remark 2. For every upsetM the set minM of all minimal elements ofM is an antichain.
Furthermore, every �nite upset M can be characterized by its minimal elements as M =↑
minM := {x ∈ V | ∃y ∈ minM : y ≤ x}. Analogous statements are valid for downsets.

De�nition 4 (order dimension). The order dimension of a poset (V,≤) is the smallest
number k such that there exist k linearly ordered sets (V, L1), . . . , (V, Lk) that represent

(V,≤) via ≤=
k⋂
i=1

Li.

2.2 Formal concept analysis

Formal concept analysis (FCA) is an applied mathematical theory rooted in an attempt
to mathematically formalize the notion of a concept. In its origins initially motivated by
some philosophical attempt to restructure lattice theory (cf., [Wille, 1982]) it nowadays
also has very broad applications in computer science, for example in data mining, text
mining, machine learning or knowledge management, to name just a few.

Concretely, in formal concept analysis one starts with a so-called formal context
K = (G,M, I) where G is a set of objects, M is a set of attributes and I ⊆ G ×M is a
binary relation between the objects and the attributes with the interpretation (g,m) ∈ I
i� object g has attribute m. If (g,m) ∈ I we also use in�x notation and write gIm. In
the context of statistical data analysis, the objects are often the data points, for example
the persons that participated in a survey.The attributes are the observed values of the
interesting variables, for example the answer yes or no to the posed questions and gIm
means that person g answered the question m with yes. (If the answers to the questions
in a survey are not binary, then one can transform them into binary attributes with the
method of conceptual scaling, see below.) A formal concept of the context K is a pair
(A,B) of a set A ⊆ G of objects, called extent, and a set B ⊆ M of attributes, called
intent, with the following properties:

1. Every object g ∈ A has every attribute m ∈ B (i.e.: ∀g ∈ A∀m ∈ B : gIm).

2. There is no further object g ∈ G\A that has also all attributes of B (i.e.: ∀g ∈ G :
(∀m ∈ B : gIm) =⇒ g ∈ A).
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3. There is no further attribute m ∈M\A that is also shared by all objects g ∈ A (i.e.
∀m ∈M : (∀g ∈ A : gIm) =⇒ m ∈ B).

Conceptually, the concept extent describes, which objects belong to the formal concept
and the intent describes, which attributes characterize the concept. The property of being
a formal concept can be characterized with the following operators

Φ : 2M −→ 2G : B 7→ {g ∈ G | ∀m ∈ B : gIm}
Ψ : 2G −→ 2M : A 7→ {m ∈M | ∀g ∈ A : gIm}

as
(A,B) is a formal concept ⇐⇒ Ψ(A) = B & Φ(B) = A.

This can be verbalized as: �The pair (A,B) is a formal concept i� B is exactly the set of
all common attributes of the objects of A and A is exactly the set of all objects having all
attributes of B.� In the sequel, we will abbreviate both Ψ and Φ with ′. (Which of the
two operators is meant will be always clear from the context.) Furthermore, for singleton
sets {g} ⊆ G or {m} ⊆M we abbreviate {g}′ by g′ and {m}′ by m′.

On the set of all formal concepts we can de�ne a subconcept relation as

(A,B) ≤ (C,D) ⇐⇒ A ⊆ C & B ⊇ D.

(Actually, for formal concepts the equivalence A ⊆ C ⇐⇒ B ⊇ D holds.) If the concept
(A,B) is a subconcept of (C,D) then it is a more speci�c concept containing less objects
that have more attributes in common. The set of all formal concepts of a context K
together with the subconcept relation is called the concept lattice of K and it is denoted
with B(K). The concept lattice is in fact a complete lattice. The set of the concept
extents of all formal concepts of B(K) is denoted with B1(K) and the set of all concept
intents is denoted with B2(K). The family of sets B1(K) is a closure system on G and
the family B2(K) is a closures system on M : A (set-theoretic) closure system S on a
space Ω is a family S ⊆ 2Ω of subsets of Ω that contains the space Ω and is closed under
arbitrary intersections. If a family F of subsets of a space Ω is not a closure system, one
can compute its closure cl(F) :=

⋂{S | S ⊇ F & S is a closure system on Ω} that is
the smallest closure system containing all sets of F .

Every closure system S on Ω can be described by all valid formal implications of S: A
formal implication is a pair (Y, Z) of subsets of Ω, also denoted by Y −→ Z. We say
that an implication Y −→ Z is valid in a family S of subsets of Ω (which needs not to be
a closure system) if every set of S that contains all elements of Y also contains all elements
of Z. In this case we also say that the family S respects the implication Y −→ Z.
Similarly, we say that a subset of Ω respects an implication Y −→ Z if it either is not
a superset of Y or if it is a superset of Z. The �rst component of a formal implication
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is also called the premise or the antecedent and the second component is also called
conclusion or the consequent of the formal implication. A formal implication is called
simple if its premise is a singleton.

A closure system S can be characterized by formal implications as follows: De�ne for
S the set I(S) of all formal implications that are valid in S. Then, given the set I(S), the
closure system S can be rediscovered from I(S) as the set of all subsets of Ω that respect
all formal implications of I(S). The set I(S) of all valid implications of a closure system
S is usually very large. To e�ciently describe a closure system, it su�ces to look at a
so-called implication base of I(S): Given an arbitrary set I of formal implications, we say
that a further set J of implications is a base of I, if we have

∀M ⊆ Ω : M respects all implications of I ⇐⇒ M respects all implications of J (1)

and if furthermore J is minimal w.r.t. this property, i.e. for every other subset J′ ( J
the equivalence (1) is not valid anymore. In the sequel, we will mainly deal with formal
implications of the closure system of the concept intents of a given formal context K.
Such implications are sometimes also called attribute-implications to indicate that one
is speaking about implications between attributes and not between objects of a context.
Here, we will always use the short term implications and will also say that an implication
is valid in a context K instead of saying that an implication is valid in the closure system
of all concept intents of K.

In the context of statistical data analysis one often has data that are not binary but
for example categorical with more than two possible values. To analyze such data with
methods of formal concept analysis one can use the technique of conceptual scaling
(cf. [Ganter and Wille, 2012, p.36-45]) to �t the categorical data into a binary setting:
For a categorical variable with the possible values in {1, . . . , K} one can introduce the K
attributes �= 1� , . . . ,�= K� and say that an object g has attribute �= i� if the value of K
equals i. In a similar way, for an ordinal variable with possible values {1 < 2 < . . . < K}
we can introduce the attributes �≤ 1�,�≤ 2�,. . ., �≤ K� and say that object g has attribute
�≤ i� if the value of object g is lower than or equal to i. One can also additionally
introduce the attributes �≥ 1�, . . ., �≥ K�. This concrete way of conceptually scaling
an ordinal variable is called interordinal scaling and will be used in one example of
application given in Section 6.2.

3 Detecting stochastic dominance

We now turn to the development of a technique for detecting stochastic dominance for
poset-valued random variables based on linear programming and the upset-characterization
of stochastic dominance.

7



3.1 Characterizing stochastic dominance via linear programming

Let (V,≤) = ({v1, . . . , vk},≤) be a �nite poset7, let x = (x1, . . . , xnx) be an i.i.d. sample
of a random variable X and let y = (y1, . . . , yny) be an i.i.d. sample of Y . Let wx =
(wx1 , . . . , w

x
k) where wxi denotes the number of observed samples of X with value vi, divided

by nx. Analogously, let wy = (wy1 , . . . , w
y
k) where wyi denotes the number of samples

of Y with value vi, divided by ny. With U((V,≤)) we denote the set of all upsets of
(V,≤). We identify an upset M ∈ (V,≤) with its characteristic vector m ∈ {0, 1}k via
mi = 1 ⇐⇒ vi ∈ M . Additionally, we also identify the relation ≤ with the relation
{(i, j) | i, j ∈ {1, . . . , k}, vi ≤ vj}, the same for the covering relation l. To the samples x

and y we associate the empirical analogue P̂ of the true law P via P̂ (X = vi) = wxi and
P̂ (Y = vi) = wyi . To check if X ≤ŜD Y we have to check

∀M ∈ U((V,≤)) :P̂ (X ∈M) ≤ P̂ (Y ∈M). (2)

Obviously, P̂ (X ∈ M) = 〈wx,m〉 and P̂ (X ∈ M) = 〈wx,m〉, so (2) is equivalently
characterizable as

∀M ∈ U((V,≤)) : P̂ (X ∈M) ≤ P̂ (Y ∈M)

⇐⇒ ∀M ∈ U((V,≤)) : 〈wx,m〉 ≤ 〈wy,m〉
⇐⇒ ∀M ∈ U((V,≤)) : 〈wx,m〉 − 〈wy,m〉 ≤ 0

⇐⇒ ∀M ∈ U((V,≤)) : 〈wx − wy,m〉 ≤ 0

⇐⇒ sup
M∈U((V,≤))

〈wx − wy,m〉 ≤ 0.

This means that the problem is characterizable as a linear program over the family
S := U((V,≤)) of subsets of V . To solve this program we can look at the concrete structure
of the family S. The family S consists of all upsets of (V,≤), i.e., of all sets M satisfying

∀i, j ∈ {1, . . . , k} : vi ∈M & vi ≤ vj =⇒ vj ∈M
which is equivalent to

∀i, j ∈ {1, . . . , k} : vi ≤ vj =⇒ mj ≥ mi

and this set of inequalities can be easily implemented in a linear program:
We have X ≤ŜD Y if and only if the linear binary program

〈wx − wy,m〉 −→ max (3)

w.r.t.

m ∈ {0, 1}k
∀(i, j) ∈≤: mj ≥ mi

7This is actually no restriction because we are in the �rst place interested in detecting stochastic
dominance for samples that are always �nite.
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has a maximal value of zero. (Note that the maximal value of (3) is always at least 0,
because for M = ∅ we have 〈wx − wy, (0, . . . , 0)〉 = 0.) If one analyzes this above binary
program further (see the last paragraph of Section 4.1 at page 21), one sees that it is not
necessary to take the mi as binary variables, one can relax the integrality conditions and
solve instead the far more simple classical linear program

〈wx − wy,m〉 −→ max (4)

w.r.t.

m ∈ [0, 1]k

∀(i, j) ∈≤: mj ≥ mi

which could be further simpli�ed to

〈wx − wy,m〉 −→ max (5)

w.r.t.

m ∈ [0, 1]k

∀(i, j) ∈ l : mj ≥ mi.

In the sequel we will denote the maximal value of (5) with D+ and the optimal value
one would get if one would replace maximization by minimization in (5) with D−.

3.2 Some analysis of the linear programming approach for de-

tecting stochastic dominance

The obtained linear program for checking dominance involves k decision variables and
|l|+k inequalities, where |l| can be shown to be bounded by bk

2
c·dk

2
e, which indicates that

the linear program is practically manageable for real data sets. One interesting question in
this context is how the feasible set of the linear program looks like in special situations and
what for example the simplex-algorithm would actually do. In applied situations, the poset
(V,≤) is often of the form V = Rd or {0, . . . , K}d and x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xi ≤ yi.
For checking stochastic dominance only the actually observed x ∈ V are of interest.This
helps in reducing the e�ective size of the poset V but at the same times makes the structure
of V only implicitly given. Thus, a general analysis seems to be di�cult and we therefore
restrict the analysis in Section 3.2.1 to some simple examples.

3.2.1 Some examples

In this section we exemplarily discuss some examples for posets (V,≤) of the form V =
{0, . . . , K}d and x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xi ≤ yi. We start with the simplest example
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where d = 1 which corresponds to a linearly ordered set V = {0 < 1 < . . . < K}. Then
the linear program (5) would translate to

〈wx − wy,m〉 −→ max

w.r.t.

m ∈ [0, 1]k


1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

...
0 0 0 . . . 1 −1




︸ ︷︷ ︸
=:A




m1

m2
...
mk


 ≤




0
0
...
0




In this case the extreme points of the feasible set are simply the vectors of the form
ml = (0, . . . , 0︸︷︷︸

l-th entry

, 1, 1, . . .), where l ∈ {0, . . . , k}. For l, l′ ∈ {1, . . . , k − 1} it is easy to

see that every two di�erent extreme points ml and ml′ are adjacent because A has full
rank and for ml the inequality constraint associated to the l − th row of A is strict where
the other inequalities are actually equalities and to �switch� from ml to ml′ one simply has
to switch the l′− th variable from basis to non-basis and the l− th variable form non-basic
to basic. A similar argumentation shows that also for arbitrary l, l′ ∈ {0, . . . , k} every two
di�erent extreme points are adjacent which means that applying the simplex algorithm
would in this case exactly mean that one scans every extreme point, i.e. every upset, so
the simplex algorithm is not better than a naive inspection of every upset. However in
the case of a linearly ordered set the number of upsets is |V | and thus no problem from a
computational point of view.

Now we come to the more di�cult cases of d > 1. In these situations the feasible set
of the linear program appears to be not so easily describable, there seems to be no simple
rule that says which extreme points are adjacent. Table 1 gives lower and upper bounds8

for the size u of the closure system of all upsets of {0, . . . , K}d for di�erent values of K and
d. One can see that for high enough K or d the closure system is very big and explicitly
checking all upsets is clearly not applicable. Compared to this, in Table 2 one can see the

8The upper bounds were computed with the help of the Sauer-Shelah lemma ([Sauer, 1972,
Shelah, 1972]). The Sauer-Shelah lemma is also closely related to Vapnik-Chervonenkis theory
which we use in Section 5.2, see also Bottou [2013] or http://leon.bottou.org/_media/papers/

vapnik-symposium-2011.pdf for the curious history of the Sauer-Shelah lemma. The lower bounds were

obtained be noting that for every l ∈ {1, . . . ,K} the set Al := {x ∈ {0, 1, . . . ,K}d |
d∑

i=1

xi = l} of all
K-bounded multisets of rank l is an antichain and thus for every non-empty set B ⊆ Al we get a di�erent

upset ↑ B. Thus, u ≥
K∑
l=1

(2|Al| − 1) + 2, where the last +2 comes from noting that also the empty set and

the whole set V are upsets, and the cardinality |Al| can be computed recursively.
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number of iterations a dual simplex algorithm did take to get a solution. (For the objective
function we simply took a standard normally distributed sample.) This indicates that with
the linear programming approach the problem is still solvable for larger values of K and d.

d

1 2 3 4 5 6 7 8

K=1
lower bound 2 5 16 95 2110 1.1e+06 6.9e+10 1.2e+21

upper bound 2 10 9.2e+01 1.5e+04 1.1e+08 3.4e+16 5.1e+31 1.5e+64

K=2
lower bound 3 15 2.7e+02 6.6e+05 2.3e+15 2.8e+42 2.0e+118

upper bound 3 129 1.3+06 2.1e+18 1.4e+53 1.5e+154

K=3
lower bound 4 37 1.0e+04 2.0e+13 9.1e+46 4.0e+174

upper bound 4 2516 4.2e+12 8.6e+49 4.6e+187

K=4
lower bound 5 83 1.1e+06 4.1e+25 4.9e+114

upper bound 5 68405 1.6e+22 4.7e+106

K=5
lower bound 6 177 3.4e+08 9.2e+43 1.3e+235

upper bound 6 2391495 2.1e+34 5.5e+196

K=6
lower bound 7 367 2.9e+11 3.5e+69

upper bound 7 102022809 7.0e+49

K=7
lower bound 8 749 7.1e+14 3.6e+103

upper bound 8 5130659560 1.0e+68

K=8
lower bound 9 1515 4.9e+18 1.6e+147

upper bound 9 296881218693 6.9e+89

Table 1: Upper and lower bounds for the size u of the closure system of all upsets of
{1, . . . , K}d for di�erent values of K and d.

d

K 1 2 3 4 5 6 7
1 0 0 7 18 18 92 239
2 4 3 19 156 796 3861 23002
3 3 78 208 1901 4456 24628 27271
4 17 86 626 3518 23002 24173 24923
5 12 200 2380 10987
6 29 353 2023 23002
7 60 396 4959
8 87 572 7698

Table 2: Number of iterations for solving the linear program via dual simplex for detecting
stochastic dominance for V = {0, . . . , K}d for di�erent values of K and d. The objective
function was a standard normally distributed random sample.

3.2.2 Duality

In this section, we analyze the dual linear program of program (4) for detecting �rst order
stochastic dominance. The most interesting inside will be that this dual program can be
interpreted as a special kind of mass transportation problem.

In order to determine the dual program of program (4), �rst note that the second class
of constraints of problem (4) can equivalently be rewritten as

∀i, j ∈ {1, . . . , k} : mi ≥ Iij ·mj (6)
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where Iij := 1<((vj, vi)) and < denotes the strict part of the partial order ≤. By de�ning
for each i ∈ {1, . . . , k}, the matrix M (i) ∈ Rk×k via

M (i)
pq =





Iip if p = q

−1 if q = i ∧ q 6= p

0 else

(7)

one then can reformulate the linear programming problem (4) by the equivalent linear
programming problem

〈wx − wy,m〉 −→ max (8)

w.r.t.

m1, . . . ,mk ≥ 0


Ek
M (1)

...
M (k)


 ·m ≤ (1, . . . , 1︸ ︷︷ ︸

k−times

, 0, . . . , 0︸ ︷︷ ︸
k2−times

)T =: b

where Ek denotes the k-dimensional unit matrix. De�ne wxy := wx − wy and z :=
(x1, . . . , xk, z11, . . . , z1k, . . . , zk1, . . . , zkk) and let b be de�ned as in the constraints of the
above linear program (8). Then the dual linear program of (8) is given by:

k∑

l=1

xl = 〈b, z〉 −→ min (9)

w.r.t.

z ∈ Rk+k2

≥0

(
Ek M (1)T . . . M (k)T

)
· z ≥



wxy1
...
wxyk




In order to investigate what duality theory can teach us about our original problem, we
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rewrite the program (9) as:

k∑

l=1

xl −→ min (10)

w.r.t.

z ∈ R+
k+k2

∀i ∈ {1, . . . , k} : xi −
∑

s∈{1,...,k}\{i}
zis +

∑

s∈{1,...,k}\{i}
Isi · zsi ≥ wxyi

For variables zis with Iis = 0, for �nding an optimal solution one can always set zis to zero,
because such zis are not present in the objective function and do occur separated only in
the i− th inequality constraint with a negative sign. Thus, the program can be simpli�ed
to

∀i ∈ {1, . . . , k} : xi −
∑

s∈{1,...,k}\{i}
Iis · zis +

∑

s∈{1,...,k}\{i}
Isi · zsi ≥ wxyi ,

which again can be simpli�ed to

∀i ∈ {1, . . . , k} : xi −
∑

{s:vs<vi}
zis +

∑

{s:vi<vs}
zsi ≥ wxyi . (11)

Note that the resulting program (10) with the rewritten version (11) of the constraints
is very similar, yet not identical to the mass transport algorithm for detecting stochastic
dominance discussed in [Range and Østerdal, 2013, p. 5]: In case the optimal objective
of the program equals 0, the values z∗ij can be interpreted as the probability masses that
need to be transported from strictly greater elements to strictly smaller elements w.r.t.
≤ in order to obtain the distribution of X from the distribution of Y (which exactly
corresponds to characterization iii) of �rst order stochastic dominance that was recalled
in the introduction). The main di�erence of our program (10) and the problem discussed
in [Range and Østerdal, 2013, p. 5] is that, while there the authors have two classes
of constraints, one class for the masses transported into each node and one class for the
masses transported out of each node, our set of constraints considers the masses that are
transported inside in- and out of each node simultaneously.

Note that there are also attempts to interpret the value of the sum
∑

ij z
∗
ij of the optimal

z∗ij values, or a weighted version of it in cardinal settings (see [Tarp and Østerdal, 2007,
p.19-20]), as a measure for the extent of stochastic dominance that is given in the situation
under consideration. However, as discussed in further detail in Section 3.3, in this paper
we argue that in order to detect the extent of stochastic dominance using the optimal value
of (10) might be a more sensible indicator for the extent of stochastic dominance since it
avoids certain counter-intuitive characteristics.
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In order to get a better impression of the structure of the above dual programming
problem, we consider the following example: Suppose the poset V consists of seven ele-
ments, namely V = {v1, . . . , v7}. Moreover, suppose the partial order ≤ is speci�ed by the
following incidence matrix M :

M =

v1 v2 v3 v4 v5 v6 v7

v1 1 1 1 1 1 1 1
v2 0 1 0 0 1 1 1
v3 0 0 1 0 1 1 1
v4 0 0 0 1 1 1 1
v5 0 0 0 0 1 0 1
v6 0 0 0 0 0 1 1
v7 0 0 0 0 0 0 1

where we have that Mij = 1 if and only if vi ≤ vj. Finally, suppose we have observed sam-
ples of X and Y and computed the vectors wx and wy. Then, the dual linear programming
problem from (10) takes the following form:

7∑

l=1

xl −→ min

w.r.t.

(x1, . . . , x7, z11, z12, . . . , z76, z77) ∈ R+
56

x1 + (z21 + z31 + z41 + z51 + z61 + z71) ≥ wxy1

x2 − (z21) + (z52 + z62 + z72) ≥ wxy2

x3 − (z31) + (z53 + z63 + z73) ≥ wxy3

x4 − (z41) + (z54 + z64 + z74) ≥ wxy4

x5 − (z51 + z52 + z53 + z54) + (z75) ≥ wxy5

x6 − (z61 + z62 + z63 + z64) + (z76) ≥ wxy6

x7 − (z71 + z72 + z73 + z74 + z75 + z76) ≥ wxy7

First, consider the observed samples lead to vectors wx = (1
7
, 1

7
, 1

7
, 1

7
, 1

7
, 1

7
) and wy =

(1
7
, 0, 0, 0, 2

7
, 2

7
, 2

7
). For that case, the optimal objective of the above programming problem

is 0 (which, due to duality and Proposition 3.1, also indicates that Y �rst-order stochastic
dominatesX). A corresponding optimal solution vector is given by (x∗1, . . . , x

∗
7, z
∗
11, . . . , z

∗
77),

where every component equals 0 except of z∗54 = z∗63 = z∗72 = 1
7
. As discussed before, the z∗ij

variables exactly describe how the distribution of X can be obtained from the distribution
of Y by a �nite number of probability mass transfers to strictly smaller elements with
respect to the partial order ≤. In our example, the distribution of X can be obtained from
that of Y by transferring mass 1

7
from node v5 to v4, mass 1

7
from node v6 to v3 and mass

1
7
from node v7 to v2. This is illustrated in Figure 1.
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v1

v2 v3 v4

v5 v6

v7

1

7

1

7

1

7

Figure 1: Mass transfer problem for wx = (1
7
, 1

7
, 1

7
, 1

7
, 1

7
, 1

7
) and wy = (1

7
, 0, 0, 0, 2

7
, 2

7
, 2

7
).

A natural question is the following: Do optimal solutions of the programming problem
(10) still possess a meaningful interpretation for the case that Y does not stochastically
dominate X? To address this question, suppose we, instead of the previous situation,
observed the vectors wx = 1

28
· (4, 5, 6, 2, 1, 3, 7) and wy = 1

28
· (4, 2, 5, 7, 6, 1, 3). In that case,

the optimal objective of our example is 6
28

(which indicates that Y does not stochastically
dominate X by the same argument as given above) and an optimal solution vector is given
by (x∗1, . . . , x

∗
7, z
∗
11, . . . , z

∗
77), where all components equal 0 except x∗6 = 2

28
, x∗7 = 4

28
, z∗52 = 3

28

and z∗53 = 1
28
. Indeed, also in the case of a non-dominant Y we receive a straightforward

interpretation: Compared to the case of stochastic dominance, where the whole probability
mass can be transported from higher values to lower values to obtain X from Y , in the case
of non-dominance, not all mass can be transported and the optimal value of (10) could be
understood as the amount of probability mass that cannot be transported and thus has to
be externally introduced to supply X with enough probability mass. Again, the optimal
solution is illustrated in Figure 2.

3.3 The minimal value as a measure of the extent and the argmin

as an insight into the actual manifestation of dominance

With the linear program (5) we can detect stochastic dominance. However, as already
betoken, generally one is not only interested in the presence or absence of stochastic
dominance, one would also like to get some rough idea about the �extent� of dominance.
In our very general setting of random variables/data with only a partially ordered
scale of measurement, a reasonable de�nition of the term extent of dominance is not
straight forward. Therefore, we will �rstly go one step back and reconstruct, how the
upset characterization of stochastic dominance, that was introduced only in purely
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v1

v2 v3 v4

v5 v6

v7

w
xy

1
= 0

w
xy

2
≈ 0.11

w
xy

3
≈ 0.36 w

xy

4
≈ −0.18

w
xy

5
≈ −0.18

w
xy

6
≈ 0.07

w
xy

7
≈ 0.14

z
∗

52 ≈ 0.11 z
∗

53 ≈ 0.04
+x

∗

6 ≈ 0.07

+x
∗

7 ≈ 0.14

Figure 2: Mass transfer problem for wx = 1
28
·(4, 5, 6, 2, 1, 3, 7) and wy = 1

28
·(4, 2, 5, 7, 6, 1, 3).

mathematical terms until now, can be concretely interpreted in conceptual terms. We
will do this by relying on one prototypic example of poverty/inequality analysis9. To
make it simple, we will start with the notion of income poverty as a simple example
of univariate poverty/inequality analysis. Consider for example that one is interested
in the di�erences of income-poverty in two countries. One simple approach is here to
�rstly de�ne a so-called poverty line c and to say that every person with income below
the poverty line c can be termed poor whereas all persons with an income above the
poverty line c can be termed non-poor. (The terms poor and non-poor are meant here in
a purely descriptive sense free from value judgment). If the poverty line could be de�ned
in a reasonable manner from a substance matter point of view, then for �measuring� the
extent of inequality, one can compare the proportions of the poor persons in the two
countries (also called head count ratio), for example by looking at the di�erences of the
proportions in the wo countries. If it is di�cult to specify the poverty line c, then one can
get rid of the need for the speci�cation of the poverty line by simultaneously looking at
every reasonable poverty line c. If, independently from the choice of the poverty line c,
the proportion of the poor is always greater for one country than for the other country,
one can reasonably say that the income-poverty in one country is clearly greater than
the income-poverty in the other country, which is exactly saying that one country is
dominated by the other w.r.t. classical univariate �rst order dominance. In the situation
of a given, �xed poverty line c, one can measure the extent of poverty for example with
the income gap ratio, which is the relative di�erence between the income of the poor and
the poverty line. The di�erence of the income gap ratios can then be used to measure

9Of course, in other concrete situations, the conceptual reconstruction done here could be less convin-
cing.
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the di�erence in the extent of poverty between the two countries. Compared to this,
in the situation of multivariate inequality analysis, the involved dimensions of poverty
like e.g. health or education are often only of ordinal scale of measurement. Of course,
other dimensions like income have a higher scale of measurement, but this does not help
in assessing, which amount of increase of income can compensate for which decrease in
health or education. Of course, one can standardize every dimension in a reasonable way,
but this would lead to a relative notion of inequality. Here, we go another way and use
a notion of �extent� of dominance that is not related to units of the di�erent dimensi-
ons but that is only based on the proportion of persons that are termed non-poor (or poor).

To do so, let us �rstly think about the translation of the notion of a poverty line to
the multivariate case: In the univariate case of income inequality we said that persons
with income below the poverty line c could be termed poor, and the persons with income
above the poverty line could be termed non-poor. In the multivariate setting, the way
to term persons as poor or non-poor is only restricted by the underlying partial order
≤. If one terms one person i as poor, then one should also declare a person j as poor if
the attributes xj of person j are all lower than or equal to the attributes xj of person
xj (i.e. xi ≤ xj). This is exactly the concept of a downset of a partially ordered set:
Every downset M of a poset (V,≤) is a reasonable concretion of the term poor in the
sense that all x ∈ M can be called poor and all x /∈ M could be called non-poor. The
notion of a downset is the natural generalization of the notion of a poverty line to the
multivariate case. In the sequel, we will deal with upsets instead of downsets. Dually to
the notion of downstes, the notion of upsets10 models the reasonable concretions of the
term non-poor instead of the term poor. We can now interpret the maximal value D+

and the minimal value D− of the linear program (5) for detecting stochastic dominance:
For the prototypic example of inequality analysis, if the maximal value D+ is zero, then
we know that X is stochastically dominated by Y , meaning that the proportion of the
non-poor persons in subpopulation Y is greater than or equal to the proportion of the
non-poor persons in subpopulation X, independently from the concretion of the term
non-poor. Furthermore, in this case the minimal value D− can be interpreted as some
measure of the extent of stochastic dominance. The value D−is exactly the di�erence
between the proportions of non-poor persons of the two countries for that concretion
of the term non-poor that is the most conservative in the sense that it maximizes the
absolute value of the di�erence in proportions between the two countries. The extent
of stochastic dominance can thus be measured to some extent with the minimal value
of (5) with the following clear interpretation: The absolute value of D− is exactly the
proportion of poor persons in the poorer country that would have to be made non-poor to
make the proportions of the poor (and thus also he proportions of the non-poor) in both
countries the same, where the notion of poor is the most conservative, i.e., for every other
reasonable notion of poor one would only have to make a smaller proportion of poor people
of the poor country non-poor to make the proportions of the poor the same in each country.

10Note that the complements of downsets are upsets and that the complements of upsets are downsets.
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As already mentioned, in [Tarp and Østerdal, 2007, p.19-20], a similar quantity for me-
asuring the extent of dominance was proposed. There, the authors use the characterizing
property (iii) of stochastic dominance and they measure the extent of dominance by the
(weighted) amount of probability mass that is needed to obtain the density fX from fY .
However, the used measure seems to be not very sensitive in the following speci�c sense:
Assume for simplicity real-valued random variables X and Y . Assume further that X is a
simple transformation of Y , concretely X := Y − ε with positive but very small ε. Then,
one would have to transport the whole probability mass to obtain fX from fY no matter
how small the value ε is. This seems to be a very undesirable property of this measure
of the extent of dominance. In such a situation, the measure D− of extent proposed here
behaves di�erently. For example if X and Y are normally distributed, then the maximal
value D− of (5) would be strictly increasing in ε and would furthermore converge to zero
if ε converges to zero. For constant random variables X and Y the measure D− would
be either zero (if ε is zero) or one (if ε is grater than zero). This seems counter-intuitive
at �rst glance, the measure is insensitive to the distance between X and Y . Actually
this behavior is adequate, because one presumes only an ordinal scale of measurement
for X and Y here, and thus one cannot reasonably measure the distance between X
and Y . The fact that one could actually be sensitive to the distance between X and Y
in the normally distributed case is due to the fact, that with our measure, we do not
directly measure (non-existing) distances in the space of the values of X and Y , instead
we measure indirectly the �distance� between X and Y by the amount of probability mass
that has to be transported to compensate inequality for the most conservative choice of a
poverty line.

While the value of D− gives a quantitative insight in the extent of dominance, the
upset U , where D− is attained additionally gives a further more qualitative insight into
how the worst possible concretion of the term poor, for which the maximal inequality in
poverty is attained, looks like. This could be interesting for example if one is interested
in the question, if the purely mathematical formalization of poor and non-poor via upsets
is maybe too rigorous and if an extreme value of the test statistic is only due to an upset
representing a very �skewed� concretion of the term non-poor, that could maybe be excluded
as a reasonable concretion of the term poor because of substance matter considerations.
In such a situation on may use the regularization techniques developed in Section 5.3.

3.4 Checking stochastic dominance as a linear program on a clo-

sure system

One important point to note is that the way we incorporated the property of being an
upset was by introducing simple inequalities of the form mj ≥ mi for all pairs (i, j) ∈ l.
In the language of formal implications this means that we demanded that an upset should
contain with every vi also every vjmvi, which is exactly saying that the formal implication
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{vi} −→ {vj} should be valid in the closure system of upsets. In fact, for the closure system
S of upsets, the essential implications are the implications of the form {vi} −→ {vj} with
vi l vj, because all these implications are respected by S and they already describe S
in the sense that they are a base of all valid implications. (Obviously there are further
redundant implications like e.g. {vi} −→ {vi} or {vi, vk} −→ {vj} with vi ≤ vj and
vk arbitrary.) For the case of upsets we were especially lucky, because all such essential
implications had a simple premise (meaning that the premise A in A −→ B is a singleton)
and thus we could implement this implications via simple inequalities mi ≤ mj and could
furthermore drop the integrality constraints. There are other situations that are such
simple, too: Due to Birkho�s theorem ([Birkho�, 1937]), every (�nite) closure system
that is additionally closed under union11 is describable via simple formal implications, and
examples of such kinds of closure systems arise for example in the context of quasi-ordinal
knowledge space theory (see, e.g., [Doignon and Falmagne, 2012, p.38-40], note also that
there are neat connections between knowledge space theory and formal concept analysis,
cf., [Rusch and Wille, 1996]). A natural question is now: Can we still solve the problem
of maximizing/minimizing a linear function on an arbitrary closure system that is not
describable via simple implications and could this have some application? The answer is
simply yes: The next sections will give two examples of closure systems that are either
explicitly given by an implication base or that are implicitly given as the concept extents
of a given formal context.

4 Linear programming on general closure systems

4.1 The case of closure systems e�ciently described by formal

implications

In some situations, a closure system that is very big can still be e�ciently described by an
implication base of all valid implications. One example is the closure system C(R2) of all
convex sets in R2 that could be of interest in the context of spatial statistics. The set of
all valid implications of C(R2) is given by I = {A −→ co(A) | A ⊆ R2} where co is the
operator that maps a set to its convex hull. Because of Carathéodory's theorem for convex
hulls12 the system L = {A −→ co(A) | A ⊆ R2, |A| ≤ 3, co(A) ) A} is an implication
base of I. In statistical applications in the context of spatial data analysis, for example
in ecology, one is interested in di�erences in the spatial distribution of di�erent species,
for example male and female Paci�c cods in the eastern Bering Sea analyzed in Syrjala
[1996]. To describe di�erences in the spatial distributions of the two subpopulations, one
can use common test statistics13: Here, test statistics of many di�erent statistical tests are

11The closure system of upsets is such a system.
12Carathéodory's theorem states that if a point x ∈ Rd lies in the convex hull of a set P of points, then

there exists a subset Q ⊆ P of at most d+ 1 points such that x lies also in the convex hull of Q.
13Here, in the �rst place we are mainly interested in the test statistic as a descriptive tool, the problem

of inference will be discussed in a general setting in Section 5.
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available, for example generalizations of the Kolmogorv-Smirnov test or generalizations
of the Cramér von Mises test (see [Syrjala, 1996]) could be used. For the Kolmogorov-
Smirnov type generalization one determines for every rectangular area the di�erence in the
proportion of male and female cods. Then one computes the maximal di�erence over all
rectangular areas. This method needs a speci�cation of a rectangular coordinate system
and the results are dependent on the concrete choice of this coordinate system. Opposed
to this, one could also simply look not only at all rectangular, but instead at all convex
areas and then compute the maximal di�erence. This would be exactly an optimization
of a linear function on a closure system. The result of the optimization on all convex sets
instead of all rectangular areas would then be independent of the choice of a coordinate
system, because for the de�nition of convexity, no speci�cation of a coordinate system is
needed at all. If one did observe cods at altogether k spatial points (v1, . . . , vk) then one
actually does not need to look at the whole closure system C(R2), it su�ces to look only at
the projected closure system C({v1, . . . , vk}) := {A∩{v1, . . . , vk} | A ∈ C(R2)}. To compute
the test statistic one can solve a binary program, where all implications are implemented
as inequality constraints. This method is generally applicable for arbitrary closure systems
with a given implication base: For a given implication base L of an arbitrary �nite closure
system, one can compute the statistic

sup
A∈⊆V, A respects L

〈wx − wy,1A〉

by solving the following binary program:

〈wx − wy,m〉 −→ max

w.r.t.

m ∈ {0, 1}k

∀(Y, Z) ∈ L :
∑

i:vi∈Y
mi −

1

|Z|
∑

i:vi∈Z
mi ≤ |Y | − 1.

Here, for any given implication Y −→ Z of L, the corresponding inequality constraint
of the binary program is automatically satis�ed if the premise of Y −→ Z is not ful�lled,
because then the left hand side is lower than |Y | − 1. If the premise Y is ful�lled, then the
corresponding inequality translates to − 1

Z

∑
i:vi∈Z

mi ≤ −1 or equivalently to 1
Z

∑
i:vi∈Z

mi ≥ 1,

thus demanding that all mi with i ∈ Z should be one, meaning that if the set described
by the indicator function (m1, . . . ,mk) contains all elements of Y , then it should also
contain all elements of Z. In our concrete situation of convex sets we would have to solve a
binary program with n decision variables and O(n3) inequality constraints. Unfortunately,
generally, the integrality constraints cannot be dropped, here. Thus, the program becomes
very di�cult to solve if n is large.
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An important case where one can actually drop the integrality constraints is the case
where one has only simple implications: In this case one can implement every simple
implication {vi} −→ {vj} as the inequality mi ≤ mj. To see that one can drop the
integrality constraints in this case, observe that any feasible vector (m1, . . . ,mk) of the
relaxed program with some ml /∈ {0, 1} is not an extreme point of the feasible set of the
relaxed program, since for ε > 0 chosen small enough (for example ε = 1/2 min{|mi−ml| |
i ∈ {1, . . . , n},mi 6= ml}) it can be represented as the convex combination of the two

feasible vectors m+ xε and m− xε where xε ∈ Rk is de�ned as xεi =

{
ε if mi = ml

0 else
.

4.2 The case of closure systems e�ciently described by a genera-

ting formal context

Closure systems also naturally arise in the theory of formal concept analysis: the family
of all formal concept extents (as well as the family of all concept intents) of a concept
lattice is a closure system. Furthermore, every arbitrary closure system can be represented
as a closure system of extents (or intents) of an appropriately chosen formal context14.
In statistical applications, it appears natural to take as objects the observed data points,
for example persons in a social survey. As attributes one can take the values of di�erent
variables of interest, for example the answers of the persons to di�erent questions. (If
the questions are yes-no questions, then they can be incorporated directly, otherwise one
can apply the method conceptual scaling to get binary data, cf. Section 2.2.) The formal
concept lattice then gives valuable qualitative information about di�erent subgroups of
persons that supplied response patterns that belong to the same formal concept and thus
share speci�c attributes. If one is interested in di�erences between di�erent subgroups
(e.g., male and female participants) w.r.t. the answers to the questions, one could look at
every formal concept and analyze the di�erences between the subpopulations that belong
to the given concept. Often, the concept lattice is very large and it becomes di�cult to
look at every formal concept. Then, one can look for example only on that concepts,
for which the di�erence between the proportions of persons belonging to this concept in
each subgroup is maximal or minimal. This is exactly the problem of maximizing a linear
function on the closure system of concept extents. If the whole concept lattice can be
computed explicitly, then one can simply explicitly compute for every extent the di�erence
in proportions between both subpopulations. However, in many situations the concept
lattice is so big that it is very hard to compute all extents/intents explicitly to perform
the optimization. (In the worst case, a formal context can have min(2|G|, 2|M |) associated
formal concepts.) In this situation one can use the fact that a pair (A,B) with A ⊆ G and

14For a closure system S ⊆ 2V take the formal context K := (V,S,∈), then the formal extents are
exactly the sets of S. Analogously, for the dual context K := (S, V,3), the formal intents are exactly the
sets of S.
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B ⊆M is a formal concept i�

A = B′ & B = A′

or equivalently i�

∀g ∈ G,m ∈M : 1A(g) = min
m∈B

1m′(g) & 1B(m) = min
g∈A

1g′(m). (12)

Characterization (12) can be used to describe the property of being a formal concept with
the help of the following characterizing inequalities:

∀g ∈ G,m ∈ B : 1A(g) ≤ 1m′(g) (13)

∀g ∈ A,m ∈M : 1B(m) ≤ 1g′(m) (14)

∀g ∈ A,m ∈ B : 1A(g) ≥
∑

m∈B
1m′(g)− |B|+ 1 & (15)

1B(m) ≥
∑

g∈A
1g′(m)− |A|+ 1. (16)

Equations (13) and (21) capture the fact that 1A(g) ≤ min
m∈B

1m′(g) and 1B(m) ≤
min
g∈A

1g′(m), respectively. Equations (15) and (16) say that 1A(g) ≥ min
m∈B

1m′(g) and

1B(m) ≥ min
g∈G

1g′(m), respectively, which is equivalent to the condition that if an ob-

ject g has all attributes of B then it has to be in the extent A and that if an attribute m
is shared by all objects of A, then it should be in the intent B. The characterization via
inequality constraints can be used to optimize a linear function of the indicator function
of the extents (or the intents, or both) with a binary program: Let G = {g1, . . . , gm} be
the set of objects, M = {m1, . . . ,mn} the set of attributes and let A ∈ {0, 1}m×n be a
matrix describing the incidence I with the interpretation Aij = 1 ⇐⇒ object number
i has attribute number j. A formal concept can then be described by a binary vector
z = (z1, . . . , zm, zm+1, . . . , zm+n) ∈ {0, 1}m+n, where the �rst m entries describe the extent
via zi = 1 i� object i belongs to the extent and the last n entries describe the intent as
zj+m = 1 i� attribute j belongs to the intent. The characterizing constraints (13) - (16)
would then translate to the conditions

∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m & zj+m ≤ 1− zi (17)

∀i ∈ {1, . . . ,m} : zi ≥
∑

k:Aik=1

zk+m −
∑

k=1,...,n

zk+m + 1 (18)

∀j ∈ {1, . . . , n} : zj+m ≥
∑

k:Akj=1

zk −
∑

k=1,...,m

zk + 1. (19)

(20)

have to be satis�ed. This could be simpli�ed to the condition
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∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m (21)

∀i ∈ {1, . . . ,m} :
∑

k:Aik=0

zk+m ≥ 1− zi (22)

∀j ∈ {1, . . . , n} :
∑

k:Akj=0

zk ≥ 1− zj+m, (23)

which has the following intuitive interpretation:

For every 0-entry in the i-th row and the j-th column of the matrix A we have:

1. if Aij = 0 and if object gi belongs to the extent, then necessarily attribute mj cannot
belong to the intent and vice versa.

2. If object gi does not belong to the extent, then there exists at least one attribute mk

of the intent, that the object gi does not have.

3. Dualy, if attribute mj does not belong to the intent, then there exists at least one
object gk of the extent, that has not attribute mj.

Thus, we can compute the maximum

max
(A,B)∈B(K)

〈wext,1A〉+ 〈wint,1B〉

of an arbitrary linear objective function (wext1 , . . . , wextn , wint1 , . . . , wintn ) of both the extents
and the intents by solving the binary program

〈(wext1 , . . . , wextm , wint1 , . . . , wintn ), (z1, . . . , zm, zm+1, . . . , zm+n)〉 −→ max (24)

w.r.t.

∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m
∀i ∈ {1, . . . ,m} :

∑

k:Aik=0

zk+m ≥ 1− zi

∀j ∈ {1, . . . , n} :
∑

k:Akj=0

zk ≥ 1− zj+m

All in all, we would thus have to solve a binary program with m + n variables and
|{(i, j | Aij = 0)}|+m+n constraints. This problem can become cumbersome if the formal
context is big enough, especially because one cannot simply drop the integrality-constraints.
However, in practical applications, often only the number of objects is large and the number
of items is medium-sized. If one further analyzes the binary program, then one observes
that the inequalities concerning the objects and the constraints concerning the attributes
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are separated in the sense that if one relaxes only the integrality constraints of the variables
z1, . . . , zm describing the extent, then the optimum of the associated relaxed mixed binary
program is still (also) attained at a binary solution and thus one can relax the integrality
constraints of the extent. The reason is that for �xed and binary (zm+1, . . . , zm+n) the
inequalities (21) and (22) are either redundant or reduce to equality constraints of the
form zi = 0 or zi = 1 and inequality (23) is either redundant or demands that a sum of zk's
associated with the extent is greater or equal to 1. If one of the zk's is not binary, than
at least one other zk′ has to be greater than zero. This means that for an appropriately
chosen15 ε > 0 the vectors (z1, . . . , zk+ε, . . . , zk′−ε, . . . , zm+n) and (z1, . . . , zk−ε, . . . , zk′ +
ε, . . . , zm+n) are still feasible with respect to the relaxed feasible set and this shows that non-
integer points are no extreme-points of the restricted polytope where the binary variables
describing the intent are �xed. Thus, the optimal value for the relaxed program is always
also attained at a binary solution.

5 Statistical inference

We now treat the question of inference. Coming back to the example of detecting stochastic
dominance, we were able to detect stochastic dominance in a sample. The natural question
of inference is now: What can we reasonably infer about stochastic dominance in the
population we sampled from? From a substance matter perspective, one would supposedly
be interested for example in the hypotheses

H0 : X is not stochastically dominated by Y vs

H1 : X is stochastically dominated by Y.

However, a reasonable consistent classical statistical test of this pair of hypotheses is not
reachable since already in the univariate case where the distribution function characterizes
stochastic dominance, we have the problem that for every X ≤SD Y , in every arbitrarily
small neighbourhood16 of Y we can �nd some Ỹ with X �SD Ỹ . To circumvent this
problem, one can modify the hypotheses, for example by switching the roles of H0 and H1

(for consistent statistical tests of this kind in the univariate case, see, e.g., [Barrett and
Donald, 2003]). Here, we go a slightly di�erent way. Since the value of D+ characterizes
X ≤SD Y via X ≤SD Y i� D+ = 0 and D− characterizes Y ≤SD X via Y ≤SD X i�
D− = 0 and furthermore X �SD Y (where X �SD Y means X �SD Y & Y �SD X) i�
D+ > 0 & D− < 0) we can simply test, if D+ and D− are signi�cantly di�erent from zero.
(In the case of for example D+ is signi�cantly positive and D− is not signi�cantly negative,

15The choice of ε depends on all inequalities that involve zk and zk′ but since there are only �nite many
constraints, ε can in fact be chosen small enough and still greater than zero.

16This is meant w.r.t. e.g., the Kolmogorov-Smirnov distance. Note also, that in our situation, we have
not much freedom of choice of other distances that induce other neighborhood concepts, since we can only
make use of the partially ordered scale of measurement of X and Y .
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we cannot directly conclude X ≤SD Y but at least Y �SD X and the possibility X �SD Y
is only possible due to upsets A with P (X ∈ A) ≥ P (Y ∈ A) where the di�erence P (X ∈
A)−P (Y ∈ A) is only slightly positive.) In the sequel we will put focus on D+ and also do
not explicitly correct for multiple testing if considering both D+ and D− simultaneously.
Actually, conceptually, here we do not take the inference problem as the primitive and
do not rigorously test a beforehand exactly stated hypothesis by doing a statistical test
that provides us with a descriptively interpretable test statistic as a by-product. Instead,
we see it a little bit the other way around: In the �rst place, we would like to get a
good, conceptually rigorous descriptive insight into the data by not relying on traditional
approaches based on somehow �arbitrarily chosen� location measures17 summarizing the
data by one number and then comparing the obtained numbers. Instead, by relying on
stochastic dominance, we in a sense somehow look simultaneously at all reasonable location
measures and if we know X ≤SD Y , then we also know that every reasonable location
measure18 would give a lower (or equal) number to X than to Y . This is a conceptually
much more reliable statement than simply comparing numbers (of course with the drawback
of being less decisive). Only in a second step we think in statistical terms about to which
extent the conceptually rigorous statement of stochastic dominance can be translated from
the sample to the population.

5.1 Permutation-based tests

Now, let us come to the purely statistical aspects of inference for detecting stochastic
dominance. (All considerations are similarly valid for linear optimization on general closure
systems.) In the simple univariate case of real-valued, continuously distributed random
variables X, Y , for the two-sample case under H0 : FX = FY , the distribution of the
test statistic D+ (and also D− and D := max{D+,−D−}) is independent of the true
law FX , has known asymptotics and can be furthermore computed exactly for identical
sample sizes (see, e.g., [Pratt and Gibbons, 2012, Chapter 7]). Opposed to this, in the
general multivariate situation, the statistic D+ is not distribution free, anymore: Firstly,
the distribution of D+ depends on the concrete structure of the poset (V,≤): If the relation
≤ is very sparse, then the set of all upsets is very large and one would generally expect
that D+ would typically have higher values than for the case of a very dense relation ≤.
Secondly, also the interplay between the structure of (V,≤) and the unknown true law is
also of relevance: For example in a very large poset (V,≤) with a very sparse relation ≤
it could be still the case that the most probability mass is living on a much smaller subset
W ⊆ V on which the restricted relation ≤ ∩ W ×W is actually very dense. This suggests
that a rigorous analytic treatment of the distribution of D+ seems to be only partially

17Note the non-classical scale of measurement we are dealing with, here.
18One of the few location measures that does not respect �rst order stochastic dominance is the mode.

But note that the mode appears most naturally if we have a categorical or an interval scale of measurement,
the mode seems to give no valuable information if we want to analyze inequality which is a genuinely ordinal
concept.
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possible19. Thus, a natural alternative is to apply a two sample observation-randomization
test (permutation test, see, e.g., [Pratt and Gibbons, 2012, Chaper 6]), here. The procedure
for evaluating the distribution of D+ under H0 : PX = PY , which is the least favorable case
of H̃0 : D+

true := sup
A∈U((V,≤))

PX(A)− PY (A) = 0 (⇐⇒ X ≤SD Y )) is straightforward:

1. Let a sample x = (x1, . . . , xnx) of size nx for subpopulation X and a sample y =
(y1, . . . , yny) of size y of subpopulation Y be given.

2. Compute the statistic D+ for the actually observed data.

3. Take the pooled sample z = (x1, . . . , xnx , y1, . . . , yny).

4. Take all index sets I ⊆ {1, . . . , nx + ny} of size nx and compute the test statistic
D+
I that would be obtained for a virtual sample x̃ = (zi)i∈I for population X and

ỹ = (zi)i∈{1,...,nx+ny}\I for subpopulation Y .

5. Order all D+
I in increasing order

6. Reject H0 if the test statistic D+ for the actually observed data is greater than the
dγ · |I|e-th value of the increasingly ordered values D+

I , where γ is the envisaged
con�dence level.

In step 4 one has to compute the test statistic for a very huge number of resamples,
thus one usually does not compute the test statistic for all resamples but only for a smaller
number of randomly chosen resamples. In the context of linear programming on closure
systems, the computation of the test statistic for one resample could be already computati-
onal demanding for very complex data sets, so the application of observation-randomization
tests has some limitations, here.

5.2 Conservative bounds via Vapnik-Chervonenkis theory

Beyond applying resampling schemes for inference there is the further possibility to apply
Vapnik-Chervonenkis theory (see, e.g., [Vapnik and Kotz, 1982]) to obtain conservative
bounds for the test statistic: In Vapnik-Chervonenkis theory, among other things, one
analyzes the distribution of

sup
A∈S
|Pn(A)− P (A)|

or
sup
A∈S
|Pn(A)− P ′n(A)|,

19Actually, there exists some literature on the asymptotic distribution of the optimal value of a random
linear program (e.g., [Babbar, 1955, Sengupta et al., 1963, Prèkopa, 1966]). However, this literature seems
to be not applicable in our situation, because in our case, under the null hypothesis, the random objective
function is symmetrically distributed around the zero vector, such that the assumption of a unique optimal
basis for the asymptotic linear program (cf. [Prèkopa, 1966, Theorem 5]) is not satis�ed.
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where P is an unknown probability law and Pn is the empirical law associated with an
i.i.d.-sample of size n (and P ′n is the empirical law associated to a further independently
drawn sample of the same size n). Here, the family S can be any arbitrary family of
subsets of a given space Ω. In our situation, the family S is the underlying closure system
of interest. The Vapnik-Chervonenkis inequalities (cf., [Vapnik and Kotz, 1982, p.170-172])
then state that

P

(
sup
A∈S
|Pn(A)− P (A)| > ε

)
≤ 6 mS(2n) e−nε

2/4 and (25)

P

(
sup
A∈S
|Pn(A)− P ′n(A)| > ε

)
≤ 3 mS(2n) e−nε

2

. (26)

These inequalities20 can be used to get conservative critical values for a one sample and
a two sample test. (In the sequel, we will put focus on the two sample situation.) The
crucial quantity involved in the right hand sides of these inequalities is the so-called growth
function

mS(k) := max
A⊆Ω,|A|=k

∆S(A), where

∆S(A) :=|{S ∩ A | S ∈ S}|
describes the cardinality of the projection of the family S on the set A. Obviously, if S

is �nite, then the growth function mS(k) is always lower than or equal to the cardinality
of S and thus |S| can be used to get a bound for the left hand sides of (25) and (26).
Actually, in our setting, we will use as the underlying space always the subset Vess of all
actually observed values of the basic set V and an associated closure system S ⊆ 2Vess on
the restricted space Ω := Vess. (Note that the projection of a closure system S ′ ⊆ 2Ω′

on
Ω′ onto a subset Ω ⊆ Ω′ via S ′|Ω = {S ∩ Ω | S ∈ S ′} is again a closure system on Ω.)
Thus, with A = Vess we have ∆S(A) = |S| and mS(2n) = |S|, such that the bound |S| is a
sharp bound for mS(2n). If the family S is explicitly given, we could thus work with the
computable bound |S|. The far more interesting situation appears if the family S is very
large and only implicitly given. Then there is another important bound (see [Vapnik and
Kotz, 1982, p.167]) on the growth function that is related to the Vapnik-Chervonenkis
dimension (V.C.-dimension) of the family21 S:

mS(k) ≤ 1.5
kV C−1

(V C − 1)!
,

20There is a bunch of similar Vapnik-Chervonenkis type inequalities that could be of help here, see, e.g.,
the summary given in Table 1 of [Vayatis and Azencott, 1999, p.4].

21Originally, Vapnik-Chervonenkis theory was mainly developed to be able to deal with in�nite families
S. Here, we have �nite families S, and if we would know |S| then, in our setting, we would better bound
mS(k) by |S| instead of using the Vapnik-Chervonenkis dimension since in our setting of S ⊆ 2Vess , this
dimension essentially only provides an upper bound for the cardinality of |S|. If the family S is very
large and is only implicitly given, then the V.C.-dimension can still provide a good computable bound for
mS(k). Note further that sometimes also other bounds for mS(2n) can be useful, for example for �nite Ω
wa have mS(2n) ≤ 2|Ω|.
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where V C is the Vapnik-Chervonenkis dimension of the family S, that is de�ned as
the cardinality of the largest possible subset A that can be shattered by S: One says that
a set A can be shattered by S (or alternatively that A is shatterable w.r.t. S) if the
projection of S on A contains all subsets of A, i.e. 2A = {S ∩ A | S ∈ S} or equivalently
∆S(A) = 2|A|. In many cases, the V.C.-dimension cannot be computed explicitly.
However, in our context it shows up that we can compute the V.C.-dimension either with
the help of binary programs or with a sharp characterization of the V.C.-dimension. Of
course, the Vapnik-Chervonenkis inequalities provide only very conservative bounds for
inference. (Note that the right hand sights of (25) and (26) do not depend on the true
law P .) If one is able to perform an observation randomization test, then one should do it
instead of dealing with the conservative Vapnik-Chervonenkis inequalities. However, the
Vapnik-Chervonenkis inequalities give us some guidance for dealing with situations where
the closure system is so big that one would expect that the distribution of the test statistic
is behaving too ugly to allow for a sensible statistical test with enough power. In such
a situation, we can use Vapnik-Chervonenkis theory to appropriately reduce the closure
system to hope for making the tail distribution of the test statistic more well-behaved22.
If one appropriately reduces the cardinality of the closure system, then one could hope
for a test statistic that has a better power for the detection of a �systematic� deviation23

from H0. This possibly increased power would then come along with a smaller and thus
less �ne-grained closure system S that is then not so sensitive to very speci�c alternatives.
Note that the V.C.-inequality is essentially based on the e�ective size of S. Thus, if S
is explicitly given, one can simply drop some sets of S to make S smaller. However, in
our situation, we often have a closure system that is implicitly given and only nicely
describable because it is a closure system. A simple removal of some sets of S is thus not
possible because sets of S are not explicitly given and an arbitrary removal of some sets
could lead to a family S ′, that is not a closure system, and thus not easily describable,
anymore. The beauty of V.C.-theory in this situation lies in the fact that if we can
compute the V.C.-dimension by supplying a shatterable set A of maximal cardinality, then
we also have a straightforward possibility to tame S: Since big shatterable sets A make S
very big, we can drop some or all elements of such sets A to tame S e�ciently. Actually,
one would not completely remove A (or a subset of A) for the whole data analysis, but
only for the construction of the closure system under which the �nal data analysis takes
place. Before explaining how this is exactly meant in di�erent situations and how we
ensure that the tamed system is still a closure system (cf. Section 5.3), we will now �rstly
characterize shatterable sets and the V.C.-dimension for di�erent closure systems in the
next section.

22Of course, V.C.-theory gives us only bounds on the tail behavior of the test statistic and no direct
insight into the actual behavior of the tails, so a sharpening of the bound does not necessarily mean that
the actual tail behavior will be getting better if we reduce the V.C.-dimension of the closure system.

23Of course, one cannot hope for a more powerful statistic w.r.t. every thinkable deviation from H0 but
only for a better power for detecting deviations that are not �too complex� w.r.t. V.C.-dimension.
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5.2.1 The Vapnik-Chervonenkis dimension of several special closure systems

This section is actually very technical and not really necessary to understand the basic ideas
in the following sections. The reader more interested in the basic concepts can thus skip
this section and Section 5.2.2. For the reader interested in Vapnik-Chervonenkis theory and
the reader interested in a detailed understanding, we would like to recommend the following
sections, because, though looking a bit technical, there are no deep or cumbersome ideas
involved in the following theorems. Contrarily, the relation between Vapnik-Chervonenkis
theory and formal concept analysis seems to be very natural. Maybe somehow surprising,
there seems to be not too much research that directly connects formal concept analysis
and Vapnik-Chervonenkis theory, the only works in this direction, the authors are aware
of, are the papers Anthony et al. [1990a,b], Albano and Chornomaz [2017], Chornomaz
[2015], Albano [2017a,b], Makhalova and Kuznetsov [2017].

De�nition & Proposition 1. Let S ⊆ 2Ω be a closure system on Ω. Let furthermore I(S)
be the set of all formal implications the closure system S respects. A set M ⊆ Ω is called
implication-free if there is no formal implication (A,B) ∈ I where A and B are disjoint
non-empty subsets of M . A set M is shatterable w.r.t. S if and only if it is implication-
free and thus the Vapnik-Chervonenkis dimension of S is the maximal cardinality of an
implication-free set M ⊆ Ω.

De�nition 5 (Vapnik-Chervonenkis principal dimension (VCPI/VCPF)). Let (V,≤) be a
partially ordered sett. The Vapnik-Chervonenkis principal ideal dimension (VCPI)
is the Vapnik-Chervonenkis dimension of the family

pi((V,≤)) := {↓ x | x ∈ V } = {{y | y ≤ x} | x ∈ V }}

of all principal ideals of (V,≤). If (V,≤) is a complete lattice, then pi((V,≤)) is a closure
system. In this case we also say that a set M ⊆ V is join-shatterable if it is shatterable
w.r.t. the family pi((V,≤)). Analogously, the Vapnik-Chervonenkis principal �lter
dimension (VCPF) is the Vapnik-Chervonenkis dimension of the family

pf((V,≤)) := {↑ x | x ∈ V } = {{y | y ≥ x} | x ∈ V }}

of all principal �lters of (V,≤). If (V,≤) is a complete lattice, then pf((V,≤)) is a closure
system. In this case we also say that a set M ⊆ V is meet-shatterable if it is shatterable
w.r.t. the family pf((V,≤)).

Theorem 1 (Motivating the notions join-shatterable and meet-shatterable). A subset M
of a complete lattice (V,≤) is join-shatterable if and and only if we have for every x ∈M :

x �
∨

M\{x}. (27)

Analogously, a subset M of a complete lattice (V,≤) is meet-shatterable if and and only
if we have for every x ∈M :

x �
∧

M\{x}. (28)
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Proof. We only proof the �rst statement, the second statement can be proofed analogously.
if: Let B ⊆ M . Take A :=↓ ∨B ∈ pi((V,≤)). Then A ∩M ⊇ B since ∀b ∈ B : b ≤ ∨B.
Additionally, for every x ∈ M\B we have B ⊆ M\{x} and thus x /∈ A, since if x ∈ A,
because of A ⊆↓ ∨M\{x} we would get x ≤ ∨M\{x} which would be a contradiction
to (27). Thus A ∩M = B and because B was an arbitrary subset of M , we can conclude
that M is shatterable.
only if: Let x ≤ ∨M\{x} for some x ∈M . Then the set M\{x} is not shatterable w.r.t.
pi((V,≤)), because every a ∈ V with ∀y ∈ M\{x} : y ≤ a is an upper bound of M\{x}
and thus a ≥ ∨M\{x} ≥ x. But this means, that every set A =↓ a ∈ pi((V,≤)) that
contains all elements ofM\{x} necessarily also contains x which shows that in factM\{x}
is not shatterable.

Theorem 2. For every �nite join-shatterable set M of a �nite24 complete lattice (V,≤)
there exists another join-shatterable set JM of join-irreducible elements of (V,≤) that has
the same cardinality as M . This means that for determining the Vapnik-Chervonenkis
principal ideal dimension it is enough to look at join-shatterable sets of join-irreducible
elements.

Proof. Let M ⊆ V be a �nite shatterable set. If all elements of M are join-irreducible
then we are done. If there exists an x ∈ M that is not join-irreducible we can �nd a
join-irreducible element z such that the set M̃ := M\{x} ∪ {z} is still join shatterable.
Since M is assumed to be �nite, we can replace step by step every join-reducible element
of M by a join-irreducible element and thus obtain a shatterable set of join-irreducible
elements with the same cardinality: So let x ∈ M\J (V ). Then x =

∨
B for some set

B ⊆ J (V ). Furthermore, we have z �
∨
M\{x} for at least one z ∈ B, because otherwise

we would have
∨
M\{x} ≥ ∨B = x which is in contradiction with the assumption that

the set M is join-shatterable. Now, take M̃ := M\{x}∪ {z}. Then, M̃ is join-shatterable.
To see this, observe that M and M̃ only di�er in the elements x and z and z ≤ x. Thus
z �

∨
M\{x} =

∨
M̃\{z} and for every other y ∈ M̃ we have y �

∨
M̃\{y} because

otherwise we would have y ≤ ∨ M̃\{y} ≤ ∨M\{y} which is in contradiction with M
being join-shatterable.

Theorem 3. The Vapnik-Chervonenkis principal ideal dimension VCPI (and also the
Vapnik-Chervonenkis principal �lter dimension VCPF) of a poset (V,≤) is bounded by
its order dimension25 odim((V,≤)).

Proof. Let d := odim((V,≤)) and let L1, . . . , Ld be d linear orders representing ≤ via
x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xLiy. We show that every set M of more than d elements

24The �niteness assumption can be dropped if one only assumes that every element x ∈ V can be
written as a supremum of join-irreducible elements of V . This is for example the case if there are no
in�nite descending chains in V .

25Remember that the order dimension of a poset (V,≤) is the smallest number d of linear orders
L1, . . . , Ld ⊆ V × V such that the relation ≤ can be represented as the intersection of these linear orders
via x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xLiy.
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of V is not join-shatterable: Take M with |M | > d and take for every i ∈ {1, . . . , d} that
element xi ∈ M that is the greatest element of M w.r.t. the linear order Li. Then every
principal ideal ↓ a that contains all the xi necessarily also contains every further element
y ∈M\{x1, . . . , xd} 6= ∅ because for every i ∈ {1, . . . , d} we have yLixiLia.

Theorem 4. Let V = (V,≤) be a �nite complete lattice. If V is distributive26, which can
be characterized by saying that the condition

∀B ⊆ J (V)∀x ∈ J (V) : x ≤
∨

B =⇒ x ≤ z for some z ∈ B (29)

is ful�lled, then the Vapnik-Chervonenkis principal dimension of V is exactly the width of
J (V) and because of Birkho�s theorem we have V ∼= (D(J (V)) and the width of (J (V))
is exactly the order dimension of V, so in this case we have V CPI(V) = odim(V).

Proof. Because of Theorem 2 we only have to look at the set J (V) of the join-irreducible
elements of V. Let d denote the width of J (V). It is clear that a join-shatterable set
M ⊆ (J (V)) necessarily is an antichain. Thus VCPI is lower than or equal to d. To see
that V CPI = d take an antichain A of size d. Then this antichain is obviously shatterable
because for all x ∈ A we have x �

∨
A\{x} since if x ≤ ∨A\{x} because of (29) we

would have x ≤ z for some z in A\{x}, but this would be in contradiction with A being
an antichain.

De�nition & Proposition 2 (Vapnik-Chervonenkis upset dimension: Simply the width).
Let V = (V,≤) be a poset and U(V) be the set of all upsets of V. Then the Vapnik-
Chervonenkis dimension of U(V) is called the Vapnik-Chervonenkis upset dimension.
The Vapnik-Chervonenkis upset dimension is identical to the width of V, because the shat-
terable sets are exactly the implication-free sets, which are in this case the antichains of V.
Analogously, the Vapnik-Chervonenkis dimension of all downsets is also equal to the width.

De�nition 6 (Vapnik-Chervonenkis formal context dimension (VCC)). Let K :=
(G,M, I) be a formal context. Let

S := B1((G,M, I)) = {A ⊆ G | (A,B) ∈ B((G,M, I)) for some B ⊆M}

be the closure system of all concept extents. The Vapnik-Chervonenkis formal concept
dimension (VCC) is de�ned as the Vapnik-Chervonenkis dimension of S.

Theorem 5 (cf. also [Albano and Chornomaz, 2017, Albano, 2017a,b]). Let K := (G,M, I)
be a formal context and let S := B1((G,M, I)). Then a set {g1, . . . , gl} ⊆ G of objects is
shatterable w.r.t. S if and only if there exists a set {m1, . . . ,ml} ⊆ M of attributes such
that

∀i, j ∈ {1, . . . , l} : (gi,mj) ∈ I ⇐⇒ i 6= j. (30)

26A lattice L is called distributive if we have x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for arbitrary x, y, z ∈ L.
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Proof. if: Let A ⊆ {g1, . . . , gl}. Take the formal concept (A′′, A′). Then A′′ contains
all gi ∈ A and for all j with gj /∈ A because of mj ∈ A′ we have gj /∈ A′′ and thus
A′′ ∩ {g1, . . . , gl} = A which shows that {g1, . . . , gl} is shatterable w.r.t. S.
only if: If {g1, . . . , gl} is shatterable then for every gi there exists a formal concept (Ai, Bi)
such that gi /∈ Ai and ∀j ∈ {1, . . . , l}\{i} : gi ∈ Ai. But this means that for every
i ∈ {1, . . . , l} there exists an attribute mi such that (gi,mi) /∈ I and ∀j ∈ {1, . . . , l}\{i} :
(gi,mj) ∈ I.
Corollary 1. The Vapnik-Chervonenkis formal context dimension of a context (G,M, I) is
equal to the Vapnik-Chervonenkis formal context dimension of the dual context (M,G, I∂),
where I∂ = {(m, g) | g ∈ G,m ∈M, gIm}.

5.2.2 Computation of the Vapnik-Chervonenkis dimension

In this section we shortly propose some methods to actually compute the Vapnik-
Chervonenkis dimension for di�erent closure systems.

Computing the Vapnik-Chervonenkis dimension if the closure system is given
via formal implications

If the closure system S is given by all valid formal implications, then computing the V.C.-
dimension can be done by searching for an implication-free set A of maximal cardinality.
To do this, one can solve the following binary program:

k∑

i=1

mi −→ max (31)

w.r.t. (32)

∀(Y, Z) ∈ I(S) :
∑

i:vi∈Y
mi +

1

|Z|
∑

i:vi∈Z
mi ≤ |Y | (33)

m = (m1, . . . ,mk) ∈ {0, 1}k (34)

Here, condition (33) codi�es the demand that for a valid implication Y −→ Z a shatterable
(implication-free) set A necessarily cannot contain any element of Z if it contains all
elements of Y . Instead of the whole set of implications in (33) one can also use only that
valid implications Y −→ Z where Y is minimal (in the sense that Ỹ −→ Z is not valid
anymore for every Ỹ ( Y ) and Z is maximal (in th sense that Y −→ Z̃ is not valid anymore
for every Z̃ ) Z). This set of implications is referred to as the generic base in formal
concept analysis (cf., e.g., [Bastide et al., 2000], where also an algorithm for extracting the
generic base is given). Note that in (33) one cannot use an arbitrary implication base: For
example the implication base

I := {{v1} −→ {v2}, {v2, v3} −→ {v4}}
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induces the further implication {v1, v3} −→ {v4} and thus the set A = {v1, v3, v4} is not
shatterable, but the �anti-implications�

I := {{v1} −→ {¬v2}, {v2, v3} −→ {¬v4}}

obtained by demanding (33) only for the implication base I would not exclude the set A
although it is not shatterable.

If one wants to compute for example the Vapnik-Chervonenkis principal ideal dimension
VCPI of an explicitly given complete lattice L = (L,≤), one can �rstly construct the formal
context K := (V, V,≥). Then, the closure system of all intents of this context is exactly the
set of all principal ideals of (L,≤) and one can compute the generic base of all implications
that are valid in this closure system. Finally, one can build and solve the binary program
(31). Actually, due to Theorem 2 it su�ces to look only at the reduced context where
join-irreducible elements of L are removed.27

Computing the Vapnik-Chervonenkis upset dimension: Computing the width

If one wants to compute the Vapnik-Chervonenkis upset dimension, in principle one can
use the binary program (31), but since the Vapnik-Chervonenkis upset dimension is simply
the width, one can also use other more e�cient algorithms to compute the width. One
possibility is to reformulate the problem of computing the width of a poset as a matching
problem in a bipartite graph: De�ne the bipartite graph G = (V ×{1}, V ×{2}, E) where
the set of vertices is the disjoint union of V and V and the two parts of G are essentially
two copies of the poset V and an edge e = ((v, 1), (w, 2)) is in E i� v < w. Now one
can compute a maximal matching in G. The maximum matching then corresponds to a
minimum size chain partitioning of V where two elements v and w with v < w are in
the same partition i� the edge ((v, 1), (w, 2)) is in the maximal matching. The number
of partitions is then |V | − m where m is the size of the maximal matching. This means
that we have found a minimal chain partitioning of V with size |V | − n which is due to
Dilworth's theorem identical to the maximal cardinality of an antichain, i.e., the width.
To actually compute the maximum matching one can use e.g. the algorithm of Hopcroft
and Karp (Hopcroft and Karp [1971]), which would have time complexity O(|V | 52 ) in our
situation.

Computing the Vapnik-Chervonenkis formal context dimension VCC

27Note that for an explicitly given poset (V,≤) that is not a complete lattice, the family pi((V,≤))
of all principal ideals is generally not a closure system, but one can look at the closure system that is
generated by all principal ideals of (V,≤) (of course, without the need of explicitly computing it). Then,
to make the computation more e�cient, one can similarly remove all reducible attributes (and also all
reducible objects) from the context K = (V, V,≥), where an attribute a is called reducible if the formal
concept ({a}′, {a}′′) is meet-reducible and an object o is called reducible if the formal concept ({o}′′, {o}′)
is join-reducible.
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To compute the Vapnik-Chervonenkis formal context dimension VCC one can simply make
use of Theorem 5. One can equivalently express condition (30) of Theorem 5 by saying
that A set A = {g1, . . . , gl} of objects is shatterable w.r.t. B1(K) if and only if there exists
a set B = {m1, . . . ,ml} such that for every object g ∈ A there exists exactly one attribute
m ∈ B with (g,m) /∈ I and if furthermore, for every attribute m ∈ B there exists also
exactly one object g ∈ A with (g,m) /∈ I. These two conditions can also be incorporated
via inequality constraints. Thus, we can compute the Vapnik-Chervonenkis formal context
dimension of a context K by jointly analyzing pairs (A,B) of an object set A and a an
intent set B satisfying (30). With the notation of Section 4.2 we have to solve the binary
program

z1 + . . .+ zm −→max

w.r.t.

∀i ∈ {1, . . . ,m} : (n− 1) · zi +
∑

j:Aij=0

zj+m ≤ n (35)

−zi +
∑

j:Aij=0

zj+m ≥ 0 (36)

∀j ∈ {1, . . . , n} : (m− 1) · zj+m +
∑

i:Aij=0

zi ≤ m (37)

−zj+m +
∑

i:Aij=0

zi ≥ 0. (38)

Here, the constraints (35) and (36) are redundant if zi is zero, e.g., if object gi does
not belong to the envisaged shatterable set A. If object gi is in the envisaged shatterable
set A, then (35) demands exactly that there is maximal one attribute mj in the associated
attribute set B with (gi,mj) /∈ I and constraint (36) further demands that there is also
at least one such attribute. The constraints (37) and (38) analogously codify the dual
statement where the roles of objects and attributes are exchanged. Here, unfortunately
one generally cannot drop any integrality constraint, so the computation of the V.C. formal
context dimension is generally very hard.

5.3 Taming the monster: pruning closure systems via Vapnik-

Chervonenkis theory

The last section showed how to compute the V.C.-dimension for several closure systems
and how to identify shatterable sets of maximal cardinality. The ability to identify such
big shatterable sets supplies us with a simple possibility of e�ectively taming the closure
system by removing such big shatterable sets to get a test statistic that is less crude in
the sense that one gets better bounds in (25) and (26) due to a lower V.C.-dimension.
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Concretely, for e.g. the closure system U((V,≤)) of upsets, every upset M ∈ U((V,≤))
can be characterized by the set min(M) of all minimal elements of M via M =↑ min(M).
To tame U((V,≤)) one can compute an antichain28 A of maximal cardinality and then
remove this antichain A (or a subsetÃ of A) from U((V,≤)) by considering not all upsets
U((V,≤)) = {↑ B | B ⊆ V } but only the family S ′ = {↑ B | B ⊆ V \A} of all upsets that
are generated by V \A (or V \Ã ). This family is generally not a closure system, anymore,
but one can simply take not the family S but the closure system29 S̃ that is generated by
S ′ via S̃ := cl(S ′) =

⋂{F | F closure system on V \A, F ⊇ S ′}.

For taming the Vapnik-Chervonenkis formal context dimension of a given formal
context K one can similarly look for objects involved in a shatterable set of maximal
cardinality and then take the closure system of the concept extents of the formal concept
lattice generated by the modi�ed context where the objects involved in a shatterable set
of maximal cardinality are removed. Generally, two issues arise here:

Firstly, for a closure system S of V.C.-dimension V C one usually has more than
one shatterable set of size V C. To e�ectively tame the closure system one therefore
has to remove the �rst found shatterable set of size V C and then one has to look at
further shatterable sets of size V C and remove them, too. In this situation, it could be
the case that the result of the taming procedure depends upon which shatterable set
of maximal cardinality was removed �rst. To avoid this problem, one can alternatively
look jointly at all shatterable sets of maximal cardinality and remove them all. However,
this could have the e�ect that in one step a huge number of sets is removed such that
the V.C.-dimension becomes too small already in one step. Furthermore, if one decides
for removing only subsets of shatterable sets, then it is not straightforward, which
subsets exactly to remove and also here, the choice of the removed subsets could possibly
have an impact on which set would be a shatterable set of maximal cardinality in the
next step. Since the ability of removing not only whole shatterable sets but also sub-
sets would be very helpful for taming in a very �exible way, this could be seen as a problem.

Secondly, the taming of the closure system is only a statistical �regularization procedure�
that only cares for the purely statistical aspects. Thus, it is desirable to analyze the taming
also with respect to its �conceptual behavior� in the sense that one should care for how
�exible the tamed closure system is w.r.t. which sets are in the closure system and how
�ne-grained the tamed closure system thus is w.r.t a purely descriptive/conceptual point of
view. This is clearly a matter of the concrete application. For the closure systems of upsets
and the closure system of concept extents we will now give concrete proposals for taming
that are in our view also acceptable from a conceptual point of view in the situations of
the application examples given later in Sections 6.1 and 6.3.

28As shown in Section 5.2.1, for the closure system of all upsets of a poset (V,≤), the shatterable sets
are exactly the antichains of (V,≤).

29For the computation of the test statistic on the tamed closure system S̃ one does not need to compute
S̃ explicitly, see Section 5.3.3.
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5.3.1 Taming upsets in the context of inequality analysis

The closure system of upsets played a crucial role in the context of stochastic dominance.
One �eld of application of stochastic dominance is multivariate poverty or inequality
analysis. In this context one does not start with a poset V , instead one has some
(often totally ordered) �dimensions� of poverty/inequality. In our example of application
given in Section 6.1., we have basically the 3 dimensions Income, Education and Health.
The poset (V,≤) is then given by the three dimensional attributes of all persons in
the survey equipped with the coordinate wise order (i.e. person x is poorer than or
as equally poor as person y i� she is poorer than or as equally poor as y w.r.t. every
dimension). Then, the concept of an upset codi�es a �multivariate poverty line� in
the sense that an upset M would be a reasonable concretion of the term non-poor by
saying that every person in the set M could be termed non-poor and every person in
the complement of M could be termed poor. The statement of stochastic dominance
X ≤SD Y where X describes one subpopulation and Y another subpopulation would then
mean ∀M ∈ U((V,≤)); P (X ∈ M) ≤ P (Y ∈ M) which can be simply translated to the
statement: �However the term poor is actually reasonably concretized, in every case the
proportion of the non-poor persons in subpopulation corresponding to X is always lower
than or equal to the proportion in the subpopulation related to Y .� Now, how can we
reasonable tame the closure system of upsets in this context? Since the closure system
of upsets is getting very big already for small posets V , a taming by explicitly removing
upsets seems hopeless, but one can use the fact that every upset M is generated by its
minimal elements via M =↑ min(M) and look at antichains instead of upsets. One way to
tame the closure system of all upsets, i.e., the closure system of all reasonable concretions
of the term non-poor in a conceptually reasonable way could be to exclude some very
�skew� concretions of the term poor : One can try to remove upsets generated by antichains
consisting of very unbalanced elements, i.e. attributes that are very low in one dimension
and at the same time very high in another dimension. To do so, one has to concretize
here, what low and high means. One possibility would be to �rstly standardize30 every
dimension to be U [0, 1] distributed. Concretely, if X ∈ Rn×p is the matrix containing the
n attributes of dimension p, de�ne for j = 1, . . . , p the univariate empirical distribution31

function F j according to the distribution of the j-th dimension in the sample and de�ne
Z ∈ Rn×p via Zij = F j(Xij). Then Z is a transformation of X where every dimension
Z•j has values ranging from 1

n
to 1 allowing for some kind of relative comparability of the

transformed attributes with the simple interpretation that if Zij = l
n
the person i is the

30If one has any external substance matter insight into how some decrease in one dimension can be
reasonably be compensated for by an increase in another dimension, one should try to re�ect this substance
matter insight into the taming procedure. Of course, the herein proposed taming procedure has to be
understood as a general purpose procedure that could be substantially improved by modi�cations based
on substance matter considerations.

31One can use here the complementary distribution function F j(x) =
|{i|Xij≥x}|

n or the usual distribution

function F j(x) =
|{i|Xij≤x}|

n , which would lead to identical results. We use here the complementary
distribution function because it �ts more to the notion of upsets.
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n − l + 1-th poorest person in the sample w.r.t. dimension i. To concretize the notion of
an �imbalanced� multivariate poverty line one can �rstly de�ne a transformed multivariate
attribute Zi· = (Zi1, . . . , Zip) as balanced if max{Zi1, . . . , Zip} −min{Zi1, . . . , Zip} ≤ δ for
a �xed threshold δ. Then, one can de�ne a poverty line as balanced if it is generated by
an antichain that consists only of balanced attributes. If one sets the threshold δ globally
to one �xed value, then w.r.t. V.C.-dimension it can happen that the V.C.-dimension
can vary drastically from region to region in the sense that e.g. for regions of medium
transformed Z values there are big sets of balanced elements building an antichain whereas
for extreme Z values there are only small sized antichains of balanced elements. For the
statistical side of the taming procedure this could lead to a very brute taming of regions of
extreme Z values without globally reducing the V.C.-dimension very much. Of course, in
the proof of the Vapnik-Chervonenkis inequality one essentially deals with the cardinality
of the closure system and this is actually sized down by the procedure, so the statistical
taming would actually still be achieved, but only if one is taming very strongly which
means that one would reduce far more sets in regions of extreme Z-values/low width
than in regions of medium Z-values/high width where the density of upsets is already
very high. (Note that every antichain of size k induces 2k upsets). One can avoid this
seemingly bad e�ect with the following localization method32:

First, �x some envisaged V.C.-dimension h0. For given α ∈ [0, 1] and
for arbitrary ε > 0 de�ne an ε-stratum around the center α as the set
Mε(α) = {vi | ∀j ∈ {1, . . . , p} : |Zij − α| ≤ ε}. Then, for �xed α choose ε(α)
such that the V.C.-dimension of Mε(α)(α) is lower than or equal to h0 and such that ε(α)
is maximal w.r.t. this property. Then collect in a set T (h0) :=

⋃{Mε(α)(α) | α ∈ [0, 1]}
all strata Mε(α)(α). The closure system Sh0 = cl(Fh0) generated by the family of sets
Fh0 = {↑ B | B ⊆ T (h0)} can then serve as a tamed subsystem of S. Note that the
V.C.-dimension of Sh0 needs not to be h0, it can be higher, because elements of di�erent
strata can build an antichain of size bigger than h0. A further important point is that
with this taming procedure we have introduced some asymmetry: In the case of the full
closure system S of upsets it played no role that we looked at upsets and not at downsets:
If we would have dealt with downsets to model the poor persons instead of modeling the
non-poor persons via upsets, we would still have got the same results. The reason for this
is simply that the complements of upsets are downsets and vice versa. In contrast to this,
the complement of special selected upsets generated by antichains of some subset T (h0) of
V are not necessarily downsets generated by the antichains of T (h0). Thus, for practical
applications, one should analyze the results of both the tamed upset and the downset
approach, which we will do in the example of application given in Section 6.1.

32If a taming with a global threshold δ appears more reasonable from a conceptual point of view in
a concrete situation of application then a global taming may still be a better choice. However, in the
example of application given in Section 6.1 we see no direct conceptual advantages of a global taming.
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5.3.2 Taming formal contexts in the context of cognitive diagnosis models and
knowledge space theory

For taming the closure system of all concept extents of a given formal contextK = (G,M, I)
with V.C.-dimension V C, in principal one can search for all shatterable objects sets of
size V C (either step by step or in one whole step, see the remarks above) and exclude the
objects of these sets from the context K to obtain a reduced context K̃ = (G̃,M, I∩G̃×M)
which then has a V.C.-dimension lower than V C (If this reduced V.C.-dimension is still
too high, one can repeat the taming process until the resulting V.C.-dimension is low
enough). For the actual data analysis one can then �rstly take the closure system B2(K̃)
of the intents of the reduced context K̃ and secondly de�ne the reduced closure system
S̃ := {{g ∈ G | ∀m ∈ B : gIm} | B ∈ B2(K̃)} generated by all intents of the reduced
context K̃ but w.r.t. the objects of the full original context K. In Section 5.3.3 we will
show how to do this in computational terms. Another possibility would be to not remove
objects but attributes. In practical applications, often objects represent data points and
the attributes represent the �multidimensional� values of the data points, so in classical
situations one usually has much more objects than attributes. In these situations it
appears more natural to remove objects, because if one would remove attributes, then
one would remove these attributes for the whole big set of all objects. Compared to
this, if one removes objects, then one removes only the speci�c concept intents generated
by these objects (and also intents that are jointly generated by removed objects and
non-removed objects). If one removes objects in the above described way, then one
reduces the V.C.-dimension of the closure system under which the �nal analysis will be
done. However, from a conceptual/descriptive/substance matter point of view, one does
not know if one had removed sets that are actually interesting/important or that one did
not remove uninteresting/unimportant sets. In some situations one can tame a context in
a more guided manner:

One interesting example where one has some kind of substance matter guidance for
taming is the case of cognitive diagnosis models (CDM), which are some kind of non-
parametric item response models. Note that cognitive diagnosis models are very closely
related to the theory of knowledge spaces ([Doignon and Falmagne, 2012], see [Heller
et al., 2015]) which is itself closely related to formal concept analysis (see [Rusch and
Wille, 1996]). In cognitive diagnosis models one has a set G of persons which respond to
a set M = {1, . . . , |M |} of cognitive tasks, for example math tasks like fraction addition
or fraction subtraction (for one well known fraction-subtraction data set see [Tatsuoka,
1984]). In contrast to more classical item response theory (IRT), in cognitive diagnosis
modeling one is not mainly interested in measuring the abilities of persons and the dif-
�culties of items, instead one is interested in the cognitive processes that generated the
observed response patterns. Here, one demand is to give persons not only one or more
numbers that measure their ability but to give a more qualitative feedback about which
concrete skills the persons possess and which skills they do not possess. To do so, one
develops (either theory driven or data driven or, in the best case, driven by a theory that
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was rigorously empirically tested and persisted the tests) a so called Q matrix that speci�es
for every item, what kind of skills are in principle necessary to solve this item. Concretely,
for a set of K relevant skills, a Q-matrix is a |M | × K matrix of zeros and ones where
an entry Qij = 1 means that the skill j is needed to solve item i. In the simplest case
one assumes that a person is expected to solve item i if she possesses all skills that are
needed to solve item i, so a lack of one skill cannot be compensated by other skills. (This
is the DINA model, cf. [Haertel, 1989, Junker and Sijtsma, 2001], but there are also other
compensatory variants like the DINO model, cf. [Junker and Sijtsma, 2001].) Further-
more, one assumes the possibility of slipping an item one is principally prepared to solve
and of luckily guessing the right answer of an item one is not prepared to solve. If for
the moment we ignore the possibility of slipping and guessing, then the Q- matrix induces
some structure of the idealized item response patterns that are possible if the probabilities
of guessing and slipping are zero. For example if for solving one item i one needs all skills
that one also needs for solving item i′ plus some more, then response patterns of the form

(. . . 1︸︷︷︸
i-th entry

. . . 0︸︷︷︸
i'-th entry

. . .)

are only possible due to a lucky guess of item i or a slipping of item i′. This fact can be
expressed by saying that the formal implication {i} −→ {i′} is valid in the closure system33

SQ := B2({1, . . . , K}, {1, . . . , |M |}, 1 − QT ) of all possible idealized response patterns.
To see that the closure system B2({1, . . . , K}, {1, . . . , |M |}, 1 − QT ) of the intents of
the context KQ := ({1, . . . , K}, {1, . . . , |M |}, 1 − QT ) is exactly the space of all possible
idealized response patterns, note that the intents are generated as {A′ | A ⊆ {1, . . . , K}}
where a set A can be understood as the set of skills an imaginary person does not posses.
Then A′ is the set of all items i with ∀j ∈ A : (1 − QT )ij = 1, i.e. the set of all items i
where all skills the person does not possess are actually not needed to solve the item i.
Thus, the intent A′ is in fact the set of all items a person not possessing exactly all skills
of A would actually be able to solve and all intents are exactly all observable idealized
response patterns. A valid formal implication Y −→ Z of KQ could be interpreted in
this situation as �All skills that are not necessary for solving any item from Y are also
not necessary for solving items from Z� or alternatively as �every imaginary person who
possess all skills for solving all items from Y also possesses all necessary skills for solving
all items from Z�.

Now, one can incorporate some or all valid implications of the idealized response
pattern space SQ to reduce the original closure system by looking only at concept
intents of the original context K = (G,M, I) (where gIm ⇐⇒ person g has sol-
ved item m) that respect all or some of the valid implications of the formal context
KQ = ({1, . . . , K}, {1, . . . , |M |}, 1−QT ) representing the idealized response pattern space.
If one enforces that all valid implications of the idealized response pattern space should
also valid in the tamed closure system for the �nal analysis, then the V.C.-dimension would

33By abuse of notation, we identify the matrix 1−QT with the relation {(i, j) | (1−QT )i,j = 1}.
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decrease, but maybe unnecessarily too much. To enforce only a subset of implications
one has to reasonably decide, which implications to include and which implications to
not include. This can be made based on theoretical substance matter considerations
about which implications are expected to be more clearly valid from a cognition theoretic
perspective and which implications are maybe more questionable because they are due
to a less rigorous but a more schematic speci�cation of involved skills. To do so, one
can substantially make use of the technique of attribute exploration (see [Ganter and
Wille, 2012, p.85]) known from formal concept analysis: Given the formal context KQ

an algorithm like the next closure algorithm (see [Ganter and Wille, 2012, p.66-68]) can
compute all formal concepts and also the so called stem base (see [Ganter and Wille,
2012, p.83]) of all valid implications of this context. In attribute exploration, at every
step of the computation of a new implication, the user is asked in an interactive way,
if the currently computed implication is actually true. Then the user can say that the
implication is actually true or provide the algorithm with an object with speci�c attributes
that are actually contradicting the formal implication. Then the algorithm would include
this counterexample into the context and proceed, but not by computing all implications
from the modi�ed context anew, but by knowing that all implications computed before
the counterexample was given are still valid in the modi�ed context.

Another possibility of selecting implications to include for taming is to do it data driven.
One can look for example at all valid implications Y −→ Z of SQ that are respected by
at least a certain proportion C of objects from the original context K in the sense that
at least a proportion C of persons, who solved all items of Y did also solve all items
from Z. Formally, this can be described as enforcing all rules Y −→ Z that have a so
called con�dence34 conf(Y −→ Z) of at least C, where conf(Y −→ Z) :=

supp(Y ∪Z)

supp(Y )
and

supp(A) := |A′| and the operator ′ is meant w.r.t. the original context K. Here, the issue
arises that if for example the rules Y −→ Z1 and Y −→ Z2 have a con�dence above the
threshold C then they would be included and furthermore the rule Y −→ Z1 ∪ Z2 would
implicitly be also valid in the tamed closure system, but this rule does not necessarily have
a con�dence of C. One can deal with this issue in di�erent ways. One way of taming
would be to enforce a set I of implications that is deductively closed (this means that if
an implication follows from some implications from I then it should be already in the set
I ) and that only consists of implications with con�dence above C and that is furthermore
maximal w.r.t. these properties. Such maximal sets are generally not unique. Furthermore,
if one has the idea that response patterns that violate implications of the idealized response
pattern space are due to a random guessing or slipping, then if the slipping/guessing for
di�erent items is independent, for valid idealized implications Y −→ Z1 and Y −→ Z2 with
con�dence C1 and C2 one would expect a con�dence of the implication Y −→ Z1∪Z2 that
is generally lower than min{C1, C2}. Thus, choosing the same threshold for implications
with di�erently sized consequents seems to be not natural. Another way to proceed is to

34This term is used in the �eld of association rule mining, cf., e.g., [Agrawal et al., 1993, Piatetsky-
Shapiro, 1991] which is also related to formal concept analysis, cf., e.g., [Lakhal and Stumme, 2005].
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simply take the set of all implications with support above a threshold C and accept that
with this set also implications from its deductive closure that may have a con�dence smaller
than C are also implicitly included for taming the closure system. If one takes this route,
one is faced with computing all implications with con�dence above C. For an implication
Y −→ {z1, z2} with con�dence above C it is necessary that also the implications Y −→ {z1}
and Y −→ {z2} have con�dence above C, so it su�ces to look only at implications with a
singleton consequence. (The implication Y −→ {z1, z2} is included for taming if and only
if both Y −→ {z1} and Y −→ {z2} have con�dence above C because this is necessary and
if both Y −→ {z1} and Y −→ {z2} have con�dence above C they are both included and
thus also Y −→ {z1, z2} has to be included since it follows from the included implications
Y −→ {z1} and Y −→ {z2}.) Instead of computing all implications with a singleton
consequence one can also compute in a �rst step only that implications that have a minimal
antecedent. Then one could exclude such implications Y −→ {z} with con�dence lower
than C and recompute the generic base. To do so, one can directly work with the formal
context KQ := ({1, . . . , K}, {1, . . . , |M |}, 1−QT ). One can compute the generic basis and
split every implication Y −→ {z1, . . . , zl} into implications Y −→ {z1}, . . . , Y −→ {zl}
with singleton consequents. Then, for every such implication Y −→ {z} with con�dence
lower than C one can exclude it by adding a the counterexample Y ′′\{z} as a further item
pattern to the context KQ. (Here the operation

′′ is meant w.r.t. the context KQ.) Then
one can compute again and again the generic base of the enlarged context until no rule has
con�dence lower than C anymore. A computationally more elegant way would be to not
to recompute the whole rule base of the enlarged context anew. In the spirit of attribute
exploration (see [Ganter and Wille, 2012, p.85]), one can smartly exclude implications with
con�dence lower than C directly during the generation of the rules. However, since one
does not work with the generic base, but with the stem base, the result would then be
di�erent and would furthermore dependent one the concrete order in which the computed
implications were presented to the user.

5.3.3 How to compute the test statistics for the tamed closures systems

In this section we shortly indicate, how one can compute the test statistic for a tamed
closure system. We start with the example of the closure system of upsets. In Section 5.3.1
we came up with the tamed family of sets Fh0 = {↑ B | B ⊆ T (h0)} that generates the
closure system Sh0 = cl(Fh0). Of course, it would be intractable to explicitly compute
the closure system Sh0 generated by Fh0 because it is simply too big. Fortunately,
the explicit computation of Sh0 is not needed: The closure system Sh0 simply consists
of all possible intersections of sets of the generating family of sets Fh0 . For ease of
presentation, assume that (V,≤) itself is already a complete lattice (otherwise, simply
take its Dedekind-MacNeille completion, cf., e.g., [Ganter and Wille, 2012, p.48]). The
closure system Sh0 is simply the set of all possible intersections of sets of the family Fh0 .
For a �nite35 family (↑ Ai)i∈{1,...,n} of upsets from Fh0 , the intersection ↑ A1 ∩ . . .∩ ↑ An

35The �niteness is actually not needed, it only makes the presentation more simple, here.
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can be written as ↑ A1 ∩ . . .∩ ↑ An =
⋃{↑ a1 ∩ . . .∩ ↑ an | ∀i ∈ {1, . . . , n} : ai ∈

Ai} =
⋃{↑ ∨{a1, . . . an} | ∀i ∈ {1, . . . , n} : ai ∈ Ai}. Thus, Sh0 can be written as

Sh0 = {↑ B | B ⊆ T̄ (h0)} where T̄ (h0) = {∨A | A ⊆ T (h0)}. Since ⋃
i∈I
↑ Bi =↑ ∨

i∈I
Bi for

arbitrary families (Bi)i∈I , the closure system Sh0 is closed under arbitrary unions and thus,
because of Birkho�s theorem, the valid implications of Sh0 are simple implications. Thus,
we can �rstly calculate all simple implications or a basis thereof and implement them in
a linear program: For example one can compute for every x ∈ V the set ↓ x ∩ T (h0) of
all elements of T (h0) that are below x. Then, one can take from the set M of all upper
bounds of ↓ x ∩ T (h0) the minimal elements minM . Finally, for every y ∈ minM one
simply has to implement the associated implication {x} −→ {y} as an inequality constrain
in the linear program.

For the case of non-guided taming of a closure system that is given by a generating
formal context, remember that the taming was simply done by removing objects from the
context (but only for the generation of the closure system of the intents, and not for the
whole analysis). Let I denote the set of indices of the objects that were excluded for the
generation of the closure system. To compute the statistic for the tamed context, one only
has to modify the program (24) to the following program:

〈(wext1 , . . . , wextm , wint1 , . . . , wintn ), (z1, . . . , zm, zm+1, . . . , zm+n)〉 −→ max (39)

w.r.t.

∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m
∀i ∈ {1, . . . ,m} :

∑

k:Aik=0

zk+m ≥ 1− zi

∀j ∈ {1, . . . , n} :
∑

k/∈I:Akj=0

zk ≥ 1− zj+m

Here, the only di�erence is that in the last set of inequalities, one does not sum over every
object index k but only over that indices, that were not excluded for the generation of
the closure system. To see the validity of this modi�cation, simply note that the three
verbalizations directly above the linear program (24) are still exactly characterizing the
situation with the only modi�cation of point 3, which has to be modi�ed to

�Dually, if attribute mj does not belong to the intent, then there exists at least one
object gk that was not excluded for the generation of the closure system of intents, and
that belongs to the extent, but does not have attribute mj.�

For the guided taming the computation of the test statistic is straightforward. Since the
formal implications one additionally imposes are computed explicitly, one can modify the
binary program described in Section 4.2 by additionally implementing the further imposed
implications as inequality constraints like described in Section 4.1.
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6 Examples of application

In this section we apply the developed methods to di�erent data sets. The applications
should on the one hand be not taken at face value as serious substance matter applications.
On the other hand, they should also be not misunderstood as pure toy examples. The aim
of the following examples of application is to show that the developed methods are in fact
applicable to �real-world� data sets and that these methods are in principle very �exible
and can also deal with di�erent kinds of data de�ciency. The big part that is missing to
make the examples serious substance matter studies is the fact that at much stages of the
analysis, some substance matter considerations have to be made or could maybe be made
to make the analysis more decisive. However, since the authors are clearly no experts
in the substance matter �elds the applications are related to, they would like to refrain
from making such substance matter decisions, if possible, or to make the actually needed
substance matter decisions only for purposes of illustration. In the following examples,
especially in our main example of Section 6.1, we analyze the data sets by a more generic
way of proceeding and, if appropriate, shortly indicate, at which steps and in which way
one could make a more re�ned data analysis, that of course would be dependent on some
substance matter decisions.

6.1 Upsets: Relational inequality analysis

We start with our main example of multivariate inequality analysis using data from the
German General Social Survey (ALLBUS) of the year 2014 (GESIS - Leibniz - Institut
fur Sozialwissenschaften [2015]). In this survey, altogether 3471 persons participated.
Here, we analyze systematic multivariate di�erences between the group of male and
female participants w.r.t. the variables Income, Education and Health. The question
about Health was asked in a split ballot design to test for a possible impact of di�erent
response scales on the result. The participants were asked both in split A and split
B about how they would describe their health status in general. The participants of
split A got the 5 di�erent answer categories �Sehr gut� (very good), �Gut� (good),
�Zufriedenstellend� (satisfactory) , �Weniger gut� (suboptimal) and �Schlecht� (bad)
whereas the participants of split B got the additional category �Ausgezeichnet� (excel-
lent). (The english categories in brackets are our own english translation.) For reasons
of simplicity, we used here only the participants of split B and did a complete case analysis.

Of course, one could also use both splits for the analysis: If one has some reason to
assume that both response scales adequately operationalize the same construct, one can
do a joint analysis of both splits by matching the two scales to each other based on their
respective empirical distribution functions. This is actually possible because the splitting
was random and thus the measured construct has the same distribution in every split.36

36Note that due to measurement error, which can be di�erent within the two splits, the actual measu-
rements can di�er in their distribution. But if the measurement errors are independent of the measured
construct and from each other, this will only produce some �smearing� of the measurements, which can
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For the joint analysis of the three variables Income, Education and Health, the
complete case analysis consisted of altogether 1515 participants (706 female and 809 male)
corresponding to a non-response rate of 12.2%. The variable Income contributed most to
the non-response-rate (the non-response rate for Income was 11.8%.) Here, income was
asked for in a two step procedure: First with an open question and then, for participants
who refused to answer the open question, a categorized question with 23 answer-categories
ranging from �no income� to �more than 7500 Euro� was added. This two-step procedure
was done to reduce the non-response rate. Here, for simplicity we use the combined
answers to the open and the list query, where for participants who answered only the
list query simply the mid-points of the interval representing the categorized answer were
used as a surrogate for the true income37. Note that for our analysis we only need the
ordinal structure of the variable Income and furthermore we can actually deal also with
a partially ordered structure of the dimension income. Thus, here one can also use more
cautious approaches where one says for example that an income that is actually only
categorically observed as [a, b) is only lower than or equal to another observed income
(no matter if precisely observed as [c, c] or imprecisely observed as [c, d)) of [c, d) i�
b ≤ c. Another possibility would be to say that categorically observed incomes [a, b) are
comparable to itself (i.e. [a, b) ≤ [a, b)), but not to a precisely observed value c ∈ [a, b)).
The stochastic dominance approach is thus very �exible to deal with certain kinds of
non-response/interval-valued observations. Here, we do simply work with the combined
values where interval-valued observed incomes are replaced by the corresponding interval
mid-points.

The variable Education is the classi�cation of the level of education according to the
International Standard Classi�cation of Education (ISCED) 2011 (see [UNESCO Institute
for Statistics (UIS), 2012]) implemented for Germany. On the highest stage, this classi�-
cation di�erentiates between 9 di�erent main levels of education:

Level 0: Less than primary education Level 5: Short-cycle tertiary education

Level 1: Primary education Level 6: Bachelor's or equivalent level

Level 2: Lower secondary education Level 7: Master's or equivalent level

Level 3: Upper secondary education Level 8: Doctoral or equivalent level

Level 4: Post-secondary non-tertiary education

We treat here the variable Education as of totally ordered scale of measurement. In
the sample, only the levels from 1 to 8 were observed. Note that also for this dimension
the methodology of stochastic dominance would be able to deal with an only partially
ordered scale: The ISCED 2011 could also be implementation in a more cautious way:
For example, instead of only comparing the highest educational achievements, one could

lead to cases where stochastic dominance w.r.t. the underlying construct is actually present, but it is not
present anymore for the measurements. A transition of non-stochastic dominance w.r.t. the construct into
stochastic dominance w.r.t. the measurements cannot happen.

37For the answer category �below 200 Euro� a value of 150 Euro and for the category �more than 7500
Euro � a value of 8750 Euro was assigned.
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alternatively look at the whole educational paths and and say that a person A is more
�poor� than another person B w.r.t. the dimension Education only if both persons
followed the same educational path but person A stopped earlier with a lower highest
educational achievement than person B. This partial ordering of the dimension Education
would lead to a less decisive analysis, but it has the potential to reveal, how much a
more classical analysis would dependent on the choice of a totally ordered scale for the
dimensioneducation.

We begin with a marginal analysis of all 3 variables. Figure 3 shows the lower
cumulative distribution function for every variable for both the male and the female
group. One can see that the female group is almost dominated by the male group for the
variables Income, Education and Health. With regard to Income, the extent of dominance
is the highest: 66.4% of the women earn not more than 1300 Euro, but only 31.9% of the
men earn not more than 1300 Euro, which is a di�erence of 34.5 percentage points. Only
for the very high income of 12000 Euro there is a small deviation from dominance in the
sense that 99.9% of the men earn not more than 12000 Euro, where this is the case for
only 99.8% of the women. For the variable Health there is only deviation from dominance
w.r.t. the percentage of women reporting a health-status bad : Only 2.2% of the women
report a health status bad, which is about 0.7 percentage points lower than the amount of
2.9% for the men. The variable Education shows strict dominance.

Now, let us come to the joint analysis. For the statistics

D+ = max
M∈U((V,≤))

〈wx − wy,m〉

D− = min
M∈U((V,≤))

〈wx − wy,m〉,

where X describes the subpopulation of male, and Y describes the subpopulation of female
persons, we obtain

D+ ≈ 36.48%

D− ≈ −1.21%,

which indicates an almost strict dominance for the joint distribution of the variables In-
come, Education and Health, where the small deviation from dominance is with D− ≈
−1.21% not much higher than the largest deviation of −0.7% for the variable Health in the
marginal analysis. The maximal value of 36.48% is about 2 percentage points higher than
for the largest maximal value of 34.5% for the variable Income in the marginal analysis.
Beyond the purely quantitative analysis one can also look, at which upsets the maximum
and the minimum of the test statistic is attained. The maximum of the statistic is attained
at an upset U generated by the antichain A (via U =↑ A) containing 9 elements depicted
in Table 3.

The minimal test statistic is attained at an upset generated by an antichain of size 4
described in Table 4. Based on a resampling scheme with 10000 replications, the test sta-
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Figure 3: Empirical cumulative distribution function for all 3 considered variables for the
male group (black) and the female group (grey).

tistic D+ appears as highly signi�cantly above 0 whereas D− is really only non-signi�cantly
di�erent from zero: The maximal observed value of D+ in the resample is 17.48% and the
minimal value of D− observed in the resample is −1.63%, which is very close to −1.21%
for the actually analyzed data set, actually, the value of −1.21% is closer to zero for the
actual data set than the closest value of the resample. The poset generated by the actu-
ally observed data and the coordinate-wise ordering has a Vapnik-Chervonenkis-dimension
(width) of 33. For such a V.C.-dimension and an n around38 700, the V.C.-inequality

38The data set included 706 female and 809 male participants. Note that actually the sampling weights
for east and west have to be also taken into account, here, however, we only want to get a rough idea
about how sharp the V.C.-inequality is in our situation.
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Income (Euro) Education (ISCED 2011) Health (self-reported) di�erence above
1 400 (0.93) Upper secondary education (0.9) excellent (0.08) 0.02 0.06
2 650 (0.84) Lower secondary education (0.99) excellent (0.08) 0.02 0.06
3 1080 (0.64) Master's or equivalent level (0.22) very good (0.32) 0.02 0.07
4 1100 (0.64) Master's or equivalent level (0.22) good (0.68) 0.06 0.14
5 1260 (0.55) Master's or equivalent level (0.22) satisfactory (0.89) 0.08 0.17
6 1300 (0.55) Upper secondary education (0.9) satisfactory (0.89) 0.3 0.49
7 1400 (0.51) Primary education (1) good (0.68) 0.25 0.37
8 1400 (0.51) Upper secondary education (0.9) bad (1) 0.33 0.49
9 1450 (0.48) Lower secondary education (0.99) satisfactory (0.89) 0.32 0.45

Table 3: The antichain A = {A1, . . . , A9} that generates that upset U =↑ A where the
maximum of the test statistic is attained. In brackets the marginal upper quantiles that
correspond to the values are given, e.g. the 0.93 behind the 400 in the �rst row of the �rst
column means that ca. 93% of the persons in the population earn at least 400 Euro. The
column di�erence displays for every row i the di�erence between the proportion of male
and the proportion of female persons that are above element Ai. The column above shows
the proportion of all persons that are above Ai.

Income (Euro) Education (ISCED 2011) Health (self-reported) di�erence above
1 100 (1) Master's or equivalent level (0.22) excellent (0.08) -0.0019 0.02
2 130 (0.99) Upper secondary education (0.9) suboptimal (0.97) 0.0359 0.87
3 600 (0.86) Lower secondary education (0.99) very good (0.32) 0.0759 0.27
4 2900 (0.12) Master's or equivalent level (0.22) bad (1) 0.0797 0.07

Table 4: The antichain A = {A1, . . . , A4} that generates that upset U =↑ A where the
minimum of the test statistic is attained. In brackets the marginal upper quantiles that
correspond to the values are given, e.g. the 1 behind the 100 in the �rst row of the �rst
column means that ca. 100% of the persons in the population earn at least 100 Euro. The
column di�erence displays for every row i the di�erence between the proportion of male
and the proportion of female persons that are above element Ai. The column above shows
the proportion of all persons that are above Ai.

(26) is too loose. For a value of the test statistic of about 36% one would have to have
chosen a V.C.-dimension of about 8 to make the conservative V.C.-inequality leading to a
signi�cant result. Since we were able to compute a large enough resample, we actually do
not need to rely on the V.C.-inequality. However, for the purpose of illustration, we can
tame the closure system of upsets to get an insight into how this a�ects the behavior of
the test statistic for the actually observed data and the distribution of the test statistic
under H0. Figure 4 shows a the value of the test statistic D+ for the actually observed
data, as well as the distribution39 of D+ under H0 for di�erent V.C.-dimensions ranging
from 4 to 39. Note that the original V.C.-dimension was 33, which is maybe surprising, but
the V.C.-dimension of 39 for the biggest tamed closure system is due to the fact that by

39Here, we computed a resample of size 1000 to get a rough insight into the distribution of D+ under
H0.
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taming the closure system one gets in a �rst step only a family of sets that is generally no
closure system and one has to enlarge this family in a second step to be a closure system to
make the analysis computationally feasible. One can see that, as expected, with increasing
V.C.-dimension, both the value of the test statistic for the actually observed data, as well
as the expectation of the test statistic under H0 increases. The standard deviation of the
test statistic has also an increasing trend for increasing V.C.-dimensions. If one standar-
dizes the test statistic D+ by subtracting its mean and dividing the result by its standard
deviation, one sees that the shape of the distribution of D+ is approximately independent
of the V.C.-dimension. The fact that the shape of the test statistic is approximately inde-
pendent of the V.C.-dimension could possibly be used to get rules of thumb for situations
where the computation of large resamples is computationally intractable. However, the
approximate independence of the shape of the distribution of D+ from the V.C.-dimension
may be only present in our special situation and thus may be misleading for getting a rule
of thumb for the general case.
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Figure 4: The value of the test statistic D+ for the actually observed data, as
well as the distributions of the test statistic D+ and the standardized test statistic
D+−D+

sd(D+)
under H0 for di�erent V.C.-dimensions. One can see that the shape of the

distribution D+ is nearly independent of the V.C-dimension.
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Figure 5: The expectation and the standard deviation of D+ under H0 for di�erent V.C.-
dimensions.

Now, we would like to illustrate a little bit, how the taming behaves w.r.t. conceptual
terms. Therefore, we analyze for a tamed closure system of V.C.-dimension 7 the tamed
upsets and downsets, where the maximum D+ and the minimum D− is attained. For
the upset-approach, the maximal statistic for the tamed closure system is attained at an
antichain of size 7 summarized in Table 5.

Income (Euro) Education (ISCED 2011) Health (self-reported) di�erence above
1 1020 (0.65) Short-cycle tertiary education (0.37) excellent (0.08) 0.01 0.02
2 1050 (0.65) Short-cycle tertiary education (0.37) very good (0.32) 0.04 0.12
3 1050 (0.65) Master's or equivalent level (0.22) good (0.68) 0.06 0.14
4 1063 (0.65) Short-cycle tertiary education (0.37) good (0.68) 0.11 0.23
5 1200 (0.6) Upper secondary education (0.9) good (0.68) 0.23 0.42
6 1248 (0.56) Upper secondary education (0.9) satisfactory (0.89) 0.3 0.5
7 1300 (0.55) Upper secondary education (0.9) suboptimal (0.97) 0.32 0.52

Table 5: The antichain A = {A1, ..., A7} that generates that upset U =↑ A where the max-
imum of the test statistic is attained for the tamed closure system with a V.C. dimension
of 7.

One can see that the maximal di�erence between the transformed Z-values in brackets
is 0.65 − 0.08 = 0.57 attained for the �rst element A1, where the Z-value of 0.65 for an
income of 1020 Euro is the largest, and a Z-value of 0.08 for a health status excellent is
the smallest value. Compared to this, in the non-tamed case, the skewest element of the
antichain generating the upset where the maximal value of the test statistic is attained is
the element A2 with a maximal Z-value of 0.99 for an education status Lower secondary
education and a minimal Z-value of 0.08 for a health status excellent. The di�erence
0.99− 0.08 = 0.91 is clearly greater than for the tamed situation showing that we actually
managed to reduce the skewness of elements generating the closure system for the tamed
analysis.
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The value of the tamed test statistic is with 32.90% not much smaller than the initial
value of 36.48%, still signi�cantly di�erent from zero. The minimal value is −0.045%
attained at the antichain consisting of only one element depicted in Table 6

Income (Euro) Education (ISCED 2011) Health (self-reported) di�erence above
1 3500 (0.08) Master's or equivalent level (0.22) excellent (0.08) -5e-04 0.003

Table 6: The antichain A = {A1} that generates that upset U =↑ A where the minimum
of the test statistic is attained for the tamed closure system with a V.C. dimension of 7.

The minimal value is not signi�cantly di�erent from zero. Table 7 and Table 8 �nally
show the results one would obtain if one would do the tamed analysis by looking at
downsets instead of upsets:

Obviously, the role of the maximal and the minimal value of the test statistic will
interchange: The maximal value of the test statistic of 0.15% means that the di�erence
between the proportion of the poor male and the poor female persons is maximally 0.15%
attained if one concretizes the term poor with the downset D =↓ A generated by the
antichain given in Table 7. The minimal value of the test statistic is −28.82% attained
for the downset generated by the antichain given in Table 8. Note that for the downset-
analysis we used for the construction of the Z-values not the complementary distribution
function, but the usual distribution function, because this �ts better to the notion of a
downset. This only has an impact on the interpretation of the numbers given in brackets.
For example the 0.06 beyond the income value of 360 Euro in Table 7 means now, that
6% of the population have income below 360 Euro. Additionally, the last column, denoted
below, now gives the proportion of persons below the corresponding element of the antichain
and the column di�erence gives the di�erence of the proportions below the corresponding
element.

Income (Euro) Education (ISCED 2011) Health (self-reported) di�erence below
1 360 (0.06) Primary education (0.01) bad (0.03) 0.0015 0.0008

Table 7: The antichain A = {A1} that generates that downsetD =↓ A where the maximum
0.0015 of the test statistic is attained for the tamed closure system with a V.C. dimension
of 7.

6.2 Concept extents: Gender di�erences and di�erential item

functioning in an item response dataset

In this section, we shortly analyze an IRT-dataset w.r.t. gender di�erences and Di�eren-
tial item functioning (DIF, [Osterlind and Everson, 2009]). The data set is a subsample
from the general knowledge quiz Studentenpisa conducted online by the German weekly
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Income (Euro) Education (ISCED 2011) Health (self-reported) di�erence below
1 1400 (0.51) Bachelor's or equivalent level (0.78) good (0.68) -0.21 0.33
2 1450 (0.52) Short-cycle tertiary education (0.75) very good (0.92) -0.28 0.41
3 1460 (0.52) Post secondary non-tertiary education (0.63) good (0.68) -0.20 0.3
4 1474 (0.53) Upper secondary education (0.55) good (0.68) -0.16 0.28

Table 8: The antichain A = {A1, ..., A4} that generates that downset D =↓ A where the
minimum −0.288 of the test statistic is attained for the tamed closure system with a V.C.
dimension of 7.

news magazine SPIEGEL ([SPIEGEL Online, 2009], see also Trepte and Verbeet [2010] for
a broad analysis and discussion of the original data set.) The data contain the answers of
1075 university students from Bavaria to 45 multiple choice items concerning the 5 di�erent
topics politics, history, economy, culture and natural sciences. For every topic, 9 questions
were posed, for example question 1 of the politics topic was: �Who determines the rules
of action in German politics according to the constitution?�. The data set was analyzed
in a number of papers, for example in Strobl et al. [2015], Tutz and Schauberger [2015],
Tutz and Berger [2016], mostly from an IRT point of view. All mentioned papers identi�ed
systematic di�erences between the subgroups of male and female students in the sense of
the presence of di�erential item functioning. Di�erential item functioning is present if the
distribution of the item response patterns in two subgroups with identical latent abilities
are di�erent. Here, one cannot assume that the subgroups of male and female students that
actually participated in the online quiz have the same latent abilities, because for example
self selection processes can be present. To analyze the presence of di�erential item functio-
ning one has to �rstly somehow match persons of the two subgroups with similar abilities.
One classical non-parametric procedure is the test of Mantel Haenszel (see [Holland et al.,
1988].), where one takes the item scores (i.e., the number of solved items) as a matching
criterion40. One strati�es the populations into parts with the same item score and then
compares the subpopulations in every stratum. The �nal test statistic is then a χ2-type
statistic cumulating over all strata. The Mantel Haenszel procedure is an item-wise test,
one tests for every item separately, if DIF is present for this item. For the construction of
the matching score one usually does not take the whole set of items, instead one ignores
items that showed DIF in a �rst preliminary analysis that was based on the whole set of
items41. This process is called puri�cation and there are di�erent variants of puri�cation,
see, e.g., [Osterlind and Everson, 2009, p.16]. We can use the linear programming approach
on formal contexts to develop a joint DIF test based on the item scores as a matching cri-
terion. Firstly, we have to care for the di�erent distributions of the abilities in the di�erent
subgroups. Here, we do not make a conditional analysis since conditioning would make all
classes with the same item score relatively small such that a 45-dimensional multivariate

40Note that this will only work if the score values are a su�cient statistic for the abilities, which is for
example the case for the Rasch model. For a discussion of deviations from this assumption in the context
of the classical Mantel Haenszel procedure, see, e.g., [Zwick, 1990]

41The actually tested item should always be included for matching to make the Mantel Haenszel proce-
dure valid under the null hypothesis of no di�erential item functioning, see [Holland et al., 1988, p.16].
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analysis in every stratum would expectedly have very low power. Instead, we re-weight
both subgroups such that the ability distributions in the male and the female group are
approximately the same and then we analyze the joint distribution of item patterns and
abilities (measured via the item scores). Concretely, we do the following:

1. Let K0 = (G,M, I) be the formal context where G = {g1, . . . , g1075} is the set of
persons, M = {m1, . . . ,m45} is the set of items and gIm i� person g solved item m.

2. Separately for the male and the female group we estimate the density of the distribu-
tion of the item scores s, denoted with f̂male and f̂female, respectively. The estimation
is done here with a kernel density estimator.

3. Then we inversely re-weight the sample by giving a weight

Wi :=

{
f̂male(si) if the ith person is female

f̂female(si) if the ith person is male.

After this, the re-weighted distribution of the scores in the male and female group
are approximately the same.

4. Then we analyze the joint distribution of response patterns and the score values in
both subgroups. To do this, we use the �exibility of formal context analysis and
simply conceptually scale the score values with an interordinal scale. Concretely, for
every score value s we add an attribute �≤ s� and an attribute �≥ s� to the original
context K0 with the interpretation person g has attribute �≤ s� if g has a score value
lower than or equal to s and person g has attribute �≥ s� if g has a score value greater
than or equal to s. Afterwards, we analyze the enlarged context K1 by looking at
the closure system B1(K1) and computing

max/minM∈B1(K1)〈(wx − wy) ·W,1M〉,

where wx are the original weights for the male and wy are the weights for the female
persons. Concretely, in the sample there were 658 male and 417 female persons, thus

wxi =

{
1

658
if the ith person is male

0 if the ith person is female

and

wyi =

{
0 if the ith person is male

1
417

if the ith person is female
.

5. In a last step we apply a puri�cation procedure by basing the item scores for matching
only on items that are not in the concept intents for which the maximal and minimal
test statistic was obtained in a �rst run. We repeat the puri�cation procedure until
not further items are excluded.
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Before showing the actual results, we �rstly compute the test statistics D+ and D−

for the context K0 without re-weighting the data. The context has a V.C.-dimension of
22 and has about 8.900.000.000 formal concepts (this is an estimate based on random
sampling of arbitrary item sets and checking if they are a concept intent) and is thus very
hardly describable explicitly and we will use the binary program described in Section 4.2
to compute the test statistics 42. The maximal value of the test statistic is 0.335 attained
at a formal concept containing the questions

F6: �Who is this? - (Picture of Horst Seehofer.)�

F26: �Which internet company took over the media group Time Warner? - AOL.�

This means that the di�erence in the proportions of male and female persons who ans-
wered at least questions F6 and F26 correctly is the greatest observed di�erence between
proportions of male and female persons that answered at least all items of some set of
items correctly. Concretely, 53.6% of the male and 20.1% of the female persons answered
these both questions rightly. The minimal value of the test statistic is −0.169 attained at
a formal concept containing the questions

F40: �What is also termed Trisomy 21? - Down syndrome.�

F43: �Which kind of bird is this? - Blackbird.�

Here, 59.6% of the male and 76.5% of the female persons got both questions right. Both
di�erences are signi�cant, for a resample of size 1000 the value max{D+,−D−} had a
range from 0.05 to 0.14 and a standard deviation of 0.014.). Figure 6 gives a rough idea
about how a (non-guided) taming of the closure system by removing big shatterable sets
of objects from the context a�ects the distribution of the test statistic D+ under H0.
(Note, that this is only a very small simulation where we resampled only 100 times for
every value of the V.C.-dimension.) The initial context has a V.C.-dimension of 22. One
can see, that by reducing the V.C.-dimension, the mean and the standard deviation of the
test statistic does not change very much for small reductions of the V.C.-dimension. Only
a very strong taming to a V.C.-dimension below 8 seems to have an e�ect in reducing the
mean of D+ under H0.

Now we come to the actual DIF-analysis: Figure 7 shows the distribution of the item
scores for the male and female persons. The distributions are very di�erent and thus we
have to correct for this di�erence by re-weighting the data. However, generally, every
attempt to account for such a kind of di�erence should be taken with some grain of salt,
because initially we would like to account for di�erences in the abilities, but the abilities are
only latent traits that cannot be observed and thus have to be estimated, in our situation

42To get a rough idea of computational complexity: The MIP solver Gurobi (see [Gu et al., 2012])
needed ca. 100 seconds to compute the statistic using one core on a 2.60 Ghz CPU (Intel(R) Xenon(R)
CPU E5-2650 v2 @2.60 Ghz, 64GB RAM).
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Figure 6: Distribution of the tamed statistic D+ for di�erent V.C.-dimensions.

from the item scores. In the unlucky case, an attempt for accounting for di�erences in
abilities can make the analysis still more misleading if the items that su�er from DIF cannot
be detected accurately enough and thus the item scores are invalidated as a surrogate for
the abilities. The joint analysis of the re-weighted sample leads in the �rst step to a
maximal value of the statistic of 0.234 attained at the intent of persons who answered the
question F26: �Which internet company took over the media group Time Warner? - AOL.�
correctly and had a score value between 17 and 37. The minimum of the test statistic in
the �rst step was −0.333 attained at an intent containing the 5 questions

F12: �Which form of government is associated with the French King Louis XIV? - Abso-
lutism.�
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Figure 7: Empirical distribution of the item scores for the female and the male group in
the subsample of the general knowledge quiz �Studentenpisa� ([SPIEGEL Online, 2009]).

F33: �What is the name of the bestselling novel by Daniel Kehlmann? - Die Vermessung
der Welt (Measuring The World)."

F35: �In which city is this building located? - Paris."

F40: �What is also termed Trisomy 21? - Down syndrome."

F43: �Which kind of bird is this? - Blackbird."

and score values between 16 and 35. After excluding questions F26, F12, F33 F35, F40
and F43 for matching, in a second step, additionally the two questions

F34: �Which city is the setting for the novel 'Buddenbrooks'? - Lübeck." and

F36: �Which one of the following operas is not by Mozart? - Aida."

were excluded for matching. In the third step, the procedure stopped with a maximal
�nal statistic D+ of 0.241 attained for the intent containing F26 and (modi�ed) score
values between 16 and 29. The minimal value D− was −0.290 attained for the intent
containing questions F12, F33, F35, F40 and F43 and (modi�ed) score values between 12
and 30. Thus, altogether, questions F12, F26 , F33, F34, F35, F36, F40 and F43 showed
DIF. (The result was statistically signi�cant in the sense that a bootstrapp sample of 10
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sample yielded a distribution of the absolute value of the test statistic with mean 0.21 and
standard deviation 0.01.)

6.3 Guided taming of concept extents in cognitive diagnosis mo-

dels

In this section, we would like to illustrate a little bit, how one can tame a formal context
in a more guided way in the context of cognitive diagnosis models. For illustration, we use
a subsample of the Trends in International Mathematics and Science Study (TIMSS) of
the year 2007. This study is an international assessment of the mathematics and science
knowledge of students, that was �rstly conducted in 1995 and has been administered every
four years thereafter by the International Association for the Evaluation of Educational
Achievement (IEA). It analyses math- and science knowledge of 4th and 8th grade students.
We use here a subsample provided in the R-package CDM43, consisting of 698 Austrian
students (4th grade) answering a set of 25 math questions (dataset data.timss07.G4.lee).
Since not all students answered all 25 questions, we restrict here the analysis to that 344
students that answered all questions. The 25 questions were the same as that used in Lee
et al. [2011]. The package also provides the Q-matrix and the description of the skills
used in Lee et al. [2011]. We will use this small subsample to illustrate the guided taming
procedure by comparing it to the non-guided taming procedure described in section 5.3.2.
The formal context K0 = ({g1, . . . , g344}, {m1, . . . ,m25}, I) has a Vapnik-Chervonenkis
dimension of 14 and consists of 255712 formal concepts. Because of the small cardinality
of the concept lattice, we can explicitly compute the closure system B1(K0) of all extents
and thus we will analyze the taming process not w.r.t. the V.C.-dimension, but w.r.t. the
cardinalities of the tamed closure systems B1(K̃). The data set contains also information
about gender, so we will analyze di�erences w.r.t. gender. Figure 8 shows the value of the
test statistic for the actually observed data in dependence on the cardinality of the tamed
closure system for both the guided taming and the non-guided taming. One can see that,
as expected, the statistic increases with increasing cardinality of the closure system. The
general pictures for the non-guided and the guided taming are very similar. For the guided
taming, the smallest closure system that is obtained by enforcing all valid implications
of the idealized response pattern space, has a size of 127, which is much higher than the
smallest possible closure system of size 2, obtainable by the strongest possible non-guided
taming. Figure 9 shows the p-value one would obtain if one would do a statistical test.
(Here, we did resampling with 1000 resamples to compute the p-values.) One can see,
that for comparable sizes of the closure system, the guided taming procedure generally
has lower p-values. One could speculate here, that the guided taming tends to exclude
mainly sets that are statistically not so important in the sense that they play no crucial
role w.r.t. di�erences between male and female participants. If one assumes that in the
actually observed data set there are clear di�erences between male and female participants,

43See Robitzsch et al. [2016] for an introduction to the package CDM.
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then it seemingly appears here, that the guided taming leads to a smart reduction of the
size of the closure system that actually reduces the variability of the statistic under H0

without reducing the test statistic under H1, too much.
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Figure 8: Value of the tamed test statistic for di�erent cardinalities of the tamed closure
system, both for the non-guided and the guided taming.
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Figure 9: Obtained p-values of the test statistic for the actually observed data for di�erent
sizes of the tamed closure system, both for the non-guided and the guided procedure.
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6.4 Convex sets: A geometrical generalization of the Kolmogorov-

Smirnov test

Finally, we want to illustrate that for small data sizes the generalization of the Kolmogorov-
Smirnov test for analyzing spatial di�erences between subpopulations in spatial statistics
as indicated in Section 4 is also practically applicable. We use here the data set quercusvm
which is a subsample of a larger data set analyzed in Laskurain [2008] and available in
the R Package ecespa ([de la Cruz Rot, 2008]). This data set consists of 100 data points
representing the locations of alive and dead oak trees (Quercus robur) in a secondary
wood in Urkiola Natural Park (Basque country, north of Spain). The data are depicted in
Figure 10. We can now compute that convex sets where the maximal and the minimal

Figure 10: Locations of altogether 100 alive and dead oak tress (Quercus robur) in a
secondary wood in Urkiola Natural Park (Basque country, north of Spain).

di�erences in proportion of alive and dead oak trees is attained. Figure 11 shows the

59



results. The blue convex set is the set, where the di�erence is maximal (37%): In the

Figure 11: Di�erence in proportions of alive and dead oak trees. Blue: maximal di�erence
of 39% (more alive than dead trees). Red: minimal di�erence of −37% (more dead than
alive trees).

blue convex area we have a proportion of 61% alive, but only a proportion of 24% dead
trees. The red convex set is the set, where the di�erence is minimal (−39%): In the red
convex area there are 15% alive and 54% dead trees. Based on 1000 resamples, one gets
an approximate p-value of 0.83, so the di�erences or not statistically signi�cant. Note
that also the Cramér von Mises type test proposed by Syrjala [1996] and also a classical
generalization of the Kolmogorov-Smirnov test, where one only looks at rectangular areas
are both non-signi�cant. (The p-values of the tests, computed with the function syrjala

from the R Package ecespa are approximately 0.84 and 0.67, respectively.) Compared to
Syrjalas test, the test based on convex sets has the advantage that it is somehow better
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interpretable because one can actually see, in which areas the di�erences in proportion
are maximal or minimal.

A further modi�cation of the test is also possible: Since the convex sets are described by
formal implications and one explicitly models these implications by imposing corresponding
inequality constraints in the binary program, one has the �exibility to impose not all, but
only some implications. One natural way to select implications to include would be to
include only implications where the data points of the premise and the conclusion are not
too far away from each other. This would lead to some kind of a localization method and the
associated closure system would get larger, which means more �exibility in detecting non-
convex distributional features but a generally higher V.C.-dimension. We shortly illustrate
this modi�cation by imposing only implications where the distances between the points of
the premises and the conclusions is not greater than 40m. Figure 12 shows the non-convex
sets where the maximal (blue) and the minimal (red) di�erences in the proportions of alive
and dead oak trees is attained.

Figure 12: Non-convex sets where the maximal (blue) and the minimal (red) di�erence in
proportions between alive and dead oak trees is attained for the modi�ed method where
only implications, where the distance between the points of the premises and the conclu-
sions in not greater than 40m, are used. The dashed circles around the highlighted blue
and red points have a radius of 40m to get an impression about which implications were
actually included.

For the modi�ed version we got a maximal value of 58% and a minimal value of 50%
for the di�erence of the proportions with an approximate p-value of 0.17.
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While the computations for this data set could be done quickly enough, for larger data
sets, the method quickly becomes intractable. The data set analyzed in Syrjala [1996]
containing 327 spatial measuring points was already very hard to analyze, to compute the
test statistic, the mixed integer solver Gurobi (Gu, Rothberg, and Bixby [2012]) took a
few days to solve the binary program. Similarly to the analysis in Syrjala [1996], the result
w.r.t. di�erences between male and female cods was not statistically signi�cant. To assess
the statistical signi�cance of our test statistic, we did not need to do resampling, which
would actually be very time demanding. Instead we could rely on the fact that for a value
of 0.06 that we observed for our test statistic, still the more classical Kolmogorov-Smirnov
type test statistic that only looks at rectangular areas would not be statistically signi�cant.

However, for dealing with the computational issue, one can use the technique of
attribute exploration for formal contexts: One can �rstly look at the formal context
K := (G,M, I) where G is the set of all rectangular areas, M is the set of all spatial
measuring points and gIm i� measuring point m lies in the rectangular area g. The re-
sulting closure system of all concept intents is then the set of all sets of measuring points
lying in some rectangular area, which is a smaller closure system than the system of all
convex sets of measuring points and in which thus more formal implications are valid. Note
that despite this, a base of all implications of this smaller closure system can be given as

{{p, q} 7→ [p, q] | p, q ∈M, [p, q] ) {p, q}},
where [p, q] := {r ∈M | r1 ∈ [min{p1, q1},max{p1, q1}] & r2 ∈ [min{p2, q2},max{p2, q2}]}.
Compared to the base for general convex sets, this base has only O(n2) implications and
is thus far more easy to handle.

Now, during the computation of all valid implications of K, in the spirit of attribute
exploration, one can check for every currently generated implication, if it is also approx-
imately true with some con�dence c in the context K̃ = (G̃,M, Ĩ), where G̃ is the set of
all half-spaces generated by two points of M and gĨm means that measuring point m lies
in the half-space g. The intents of this context are exactly all convex areas of measuring
points. If the currently generated implication is also true in the larger closure system of
all convex areas, then one would treat it as valid, otherwise one would provide a convex
half-space g ∈ G̃ as a counterexample.

With this procedure one would generate a closure system that is larger than the system
of all rectangular areas and smaller than the closure system of all convex areas and the
con�dence level c regulates the size of the resulting closure system and the size of the
implication base.

Thus, with this modi�cation, we have some �scalable� method for spatial statistics. (Of
course, with the drawback that now the result of the method is dependent on the choice
of the coordinate system.)
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7 Conclusion

In this paper we analyzed the problem of detecting stochastic dominance as a prototypical
example of optimizing a linear function on a closure system. Compared to the general case,
for stochastic dominance, the integrality constraints of the underlying binary program
could be dropped which helped in making the problem more tractable. For general closure
systems the binary programs are more di�cult to solve, but we managed to solve them in
our concrete cases of application. Note that we did not explicitly incorporate knowledge
about the underlying closure system into the mixed integer solver we used. It seems that
one can make the computations far more e�cient by using for example knowledge about
valid formal implications of the underlying closure system. If one knows that the certain
formal implications are valid, then one can possibly use this knowledge to explicitly prune
the search space in the branch and cut algorithm of the mixed integer solver.

The solved binary programs and the associated test statistics treated in this paper
could be understood as some Kolmogorov-Smirnov type generalizations. This motivates the
question if also other generalizations like weighted Kolmogorov-Smirnov type or Anderson-
Darling type tests are computational tractable. Actually, it seems to be not too di�cult to
compute such variants of a test statistic: Firstly, one can impose one additional constraint
into the underlying program that demands that the sets one is optimizing over contain at
least (or at most, or exactly) an amount c of overall probability mass. Secondly, one can
do the constrained optimization for every possible amount c and can then aggregate the
optimal values for di�erent c for example to

sup
c

sup
m:

〈wx+wy ,m〉≥c
〈wx − wy,m〉·ψ(c),

where ψ is some appropriately chosen weighting function.
All in all, it seems that the optimization of linear functions on closure systems has a

broad range of possible applications and thus deserves further research.
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