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Relational data analysis

Numerical data analysis

A given set O = {o1, . . . , om} of objects (data points, statistical units)

is analyzed by analyzing numerical assignments u(o1), . . . , u(om). (e.g.,

person oi has an income of 1200 Euro).

Relational data analysis

A given set O = {o1, . . . , om} of objects (data points, statistical units)

is analyzed by either

I analyzing empirical relations R between the objects (e.g., does

person oi have a smaller income than person oj ,  order theory) or

I analyzing empirical relations I between the objects and certain

attributes A = {a1, . . . , am} (does object oi have attribute aj , e.g.,

is person oi male?,  e.g., Formal concept analysis (FCA, [Ganter

and Wille, 2012])).



Imprecise/Relational data

I Epistemic case: precise data point x that can only be observed in

interval form [xl , xu] and one only knows x ∈ [xl , xu].

Example: imprecisely observed data about income in social surveys (to

reduce item non-response rate).

oi < oj ⇐⇒ oi is in a lower income-category than oj .



Imprecise/Relational data

I Ontic case: Data point x is observed precisely, but has no

numerical, but only an ordinal/relational character.

Example: Formal education in poverty analysis.



Example: Different educational paths in International Standard Classifica-

tion of Educationin [UNESCO Institute for Statistics (UIS), 2012]

oi < oj ⇐⇒ oi followed the same educational path like oj , but stopped earlier.



Relational data analysis

I Relational data analysis applicable for both cases,

but appears more naturally for ontic case.

I But: for the example of detecting stochastic dominance

for interval-valued data (later):

Ontic type analysis technically easier and will lead to

exactly the same results like an epistemic type analysis.



Basic situation

I Basic set V .

I Closure system S ⊆ 2V (i.e., a family S of subsets of V

that contains V and that is closed under arbitrary

intersections).

I Here: discrete case: V finite.

I Aim: compute supremum type statistic

D+ := sup
S∈S

f (S)

where

f (S) = 〈w ,1S〉

is a linear function in the indicator function of S .



Supremum statistics on closure systems: Examples of applica-

tion

I Multivariate generalizations of Kolmogorov-Smirnov test:

• Spatial statistics (closure system of all convex areas)

• Item response theory (IRT): multivariate item impact and

Differential item functioning analysis (DIF) in dichotomous

IRT- datasets (closure system of all principal filters)

• Formal concept analysis / Subgroup discovery analysis

(closure system of all formal concept extents/ closure

system of all subgroups)

I Multivariate generalizations of first order stochastic

dominance (closure system of all upsets of a partially

ordered set)



Example 1: Two sample Kolmogorov-Smirnov test / test of

stochastic dominance

I V = R
I Two samples x = (x1, . . . , xn) and y = (y1, . . . , ym) with associated

empirical measures P̂x and P̂y

I Closure system S = { [c ,∞) | c ∈ R } of all upsets of (R,≤)

I statistic D+ := sup
[c,∞)∈S

P̂x([c ,∞))− P̂y ([c ,∞)),

I or statistic D− := inf
[c,∞)∈S

P̂y ([c ,∞))− P̂x([c,∞))

I or statistic D := max{D+,−D−}
I It is enough to look at the finite closure system

S|x ,y := { S ∩ {x1, . . . , xn, y1, . . . , ym} | S ∈ S}



Example 2: Kolmogorov-Smirnov test and Stochastic domi-

nance in higher dimensions

I V = (V ,≤) partially ordered set (poset)

I Two samples x = (x1, . . . , xn) and y = (y1, . . . , ym) with associated

empirical measures P̂x and P̂y

I Closure system S = {↑ x := {y | y ≥ x} | x ∈ V } of all principal

filters of V for Kolmogorov-Smirnov test.

I Closure system S = { A ⊆ V | a ∈ A & b ≥ a =⇒ b ∈ A } of all

upsets of (V ,≤) for Stochastic dominance

I statistic D+ := sup
S∈S

P̂x(S)− P̂y (S) (and D− and D)

I Closure system S|x ,y typically very large.



Example 3: Item impact and Differential item functioning (DIF)

in dichotomous item response data

I Given set A = {a1, . . . , an} of items (e.g., questions) of an IRT test

battery that was solved by a set O = {o1, . . . , om} of persons.

I Given incidence relation I ⊆ O ×A with (oi , aj) ∈ I :⇐⇒ person

oi answered question aj correctly.

I For subset A ⊆ A define the set YA := {o ∈ O | ∀a ∈ A : (o, a) ∈ I}
of all persons that answered at least all questions in A correctly.

I Then, the family S := {YA | A ⊆ A} of all such sets of persons is a

closure system. (In FCA it is called the closure system of all formal

concept extents)



Example 3: Item impact and Differential item functioning (DIF)

in dichotomous item response data

I Given a target attribute (e.g., gender) one can look at every such

set and compute that set, for which the target variable has the most

unusual statistical (distributional) characteristics, (e.g., the

difference in proportions of male and female persons is very large)

I This is exactly the problem of computing a supremum of a linear

function over a closure system

I Closely related to problem statement of subgroup discovery analysis

(e.g., [Klösgen, 1996, Wrobel, 1997, Lavrač et al., 2004, Atzmueller,

2015], there: more than one subgroup, different, generally non-linear

objective functions)



Solving the optimization problem D+ = sup
S∈S
〈w ,1S〉

I Typically, the closure system is very large  explicit

computation of 〈w ,1S〉 for all sets of the closure system

not feasible

I One can formulate the optimization problem as a binary

linear program.

I The demand S ∈ S can be modeled by using contextual

logic from FCA. Example: For the closure system of all

upsets: If a ≤ b, then every upset that contains a

necessarily must also contain b.

I The closure system of all upsets is exactly described by all

such formal implications

I All these formal implications can be implemented via

inequality constraints of the form 1S(a) ≤ 1S(b).



Solving the optimization problem D+ = sup
S∈S
〈w ,1S〉

I Case of stochastic dominance: demand of decision

variables to be binary can be dropped  Classical linear

program that is easy enough to solve.

I Case of item impact/DIF: One can model the formal

implications between questions and persons (e.g.: if oi is

in YA and if oi did not solve aj , then aj cannot be in A).

I This leads to binary program with m + n binary decision

variables and O(m + n) constraints, where for n decision

variables the demand of being binary can be dropped.

I Obtained program can also be used in the context of

subgroup discovery.



Statistical inference for D+ = sup
S∈S
〈w ,1S〉

I Teststatistic D+ not distribution-free

I permutation test

I Vapnik-Chervonenkis theory ([Vapnik and Chervonenkis,

1968, 1971]) for large deviation bounds:

Neat relations between V.C.-dimension and order

theoretic/lattice-theoretic notions (e.g., for upsets:

V.C.-dimension = width, for distributive lattices:

V.C.dimension of all principal filters = order dimension) .

I Vapnik-Chervonenkis theory also supplies possibility of

regularization.



Summary

I We introduced linear/binary programs for computing

supremum statistics on closure systems.

I Areas of application include:

• Spatial statistics

• Multivariate stochastic dominance (e.g., in poverty

analysis)

• Item impact/DIF in item response theory

• generally: Subgroup discovery / Formal concept analysis

I We can solve the inference problem with permutation tests

I Additional statistical analysis with V.C.-theory (including

computing and trimming V.C.-dimension  regularization)



Application example

I Subsample of Allbus 2014 (706 female and 809 male

respondents).

I Dimensions:

• Income.

• Health (self-reported, ranging from 1 (bad) to 6

(excellent)).

• Education (ISCED 2011: ranging from 0 (less than primary

education) to 8 (doctoral or equivalent level)).



Marginal analysis
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Joint analysis

I V.C.-dim = 33 (number of upsets ∈ [1010, 1060], dual simplex

algorithm took less than a second).

I D+ ≈ 36.5%.

I D− ≈ −1.2%.

I Female subgroup (Y ) almost stochastically smaller than male

subgroup (X ).

I Value of

D+ significantly positive, D− not significantly different from zero.
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