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General starting point

I Basic set V .

I Family S ⊆ 2V of subsets of V .

I Aim: compute supremum type statistic

D+ := sup
S∈S

f (S)

where

f (S) = 〈w ,1S〉

is a linear function in the indicator function of S .
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General starting point

Exmples:

I D+ = sup
S∈S
|Pn(S)− P(S)|

I D+ = sup
S∈S

= |Pn(S)− P ′
n(S)|

... Theory of uniform Glivenko-Cantelli-classes,

Vapnik-Chervonenkis theory

.... Applications:

I Generalizations of Kolmogorov-Smirnov-type statistical tests

I Subgroup discovery:
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Subgroup discovery

“In subgroup discovery, we assume we are given a

so-called population of individuals (objects, customer,...)

and a property of those individuals we are interested in.

The task of subgroup discovery is then to discover the

subgroups of the population that are statistically“most

interesting” i.e. are as large as possible and have the

most unusual statistical (distributional) characteristics

with respect to the property of interest.”[Wrobel, 2001]
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Subgroup discovery for supervised classification

I Given a family S of sets (subgroups).

I Given a point x ∈ Rp to classify.

I Define the class labels as the property of interest.

I Find that subgroup S ∈ S that is (as large and) as pure as

possible w.r.t. the class labels and that contains x .

I Classify x according to the majority class label in the

subgroup.
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Subgroup discovery for supervised classification

Problems:

I Computationally very demanding (especially in high

dimensions p).

I V.C.-dimension of S very high for high dimensions p.

Solution: Do simplification of computations and ’regularization’ in

one step by modifying the problem to ’stylized star-shaped

subgroup discovery’:
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I Classical subgroup discovery: Subgroups S ∈ S are described

by covariate characteristics, e.g.

S = {x | x1 ∈ [1, 3] and x5 ≥ 10}
 high-dimensional hyper-cubes.

I Computing D+ can be done either by pruning techniques or a

binary programming formulation. (Note: S is a closure

system (closed under arbitrary intersections)  methods of

formal concept analysis applicable.)

I Modification: Instead of the closure system S of all

hyper-cubes, look at the ’local ring of star-shaped sets’:
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Definition (star-shaped set)

A set S in p-dimensional Euclidean space Rp is called star-shaped

if there exists a center point c ∈ S such that every other point

p ∈ S is visible from c, i.e., the whole line cp lies in S . In this

case, any such point c is called a center point of S and the set of

all center points is called the kernel of S .
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Observations

I The family of all star-shaped sets of Rd is generally neither

closed under intersection, nor closed under union.
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Observations

I The family of all star-shaped sets of Rd is generally neither

closed under intersection, nor closed under union.
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Observations

I But the family of all star-shaped sets is a ’local ring of sets’:

An arbitrary intersection/union of star-shaped sets with

overlapping kernels is again a star-shaped set.
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Observations

I But the family of all star-shaped sets is a ’local ring of sets’:

An arbitrary intersection/union of star-shaped sets with

overlapping kernels is again a star-shaped set.
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Computation of D+

I Local ring property makes S easy to describe locally.

I  Computation of D+ easier by quantifying over all possible

center points:

I Instead of solving one binary program, one only needs to

solve n ordinary linear programs!
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’Regularization’

I Concept of star-shaped sets uses notion of q lying between p

and r , which can be formalized with a ternary

betweenness-relation B ⊆ V 3.

I This notion is too ’narrow’ (especially in high dimensions).

 Stylized notion of betweenness:

“q lies between p and r .”  “q lies approximately between p and r .”

I Classical notion of betweenness in Rp:

p, q, r ∈ B ⇐⇒ q = λp + (1− λ)r for some λ ∈ [0, 1].

I Stylized notion of betweenness (one possibility): (p, q, r) ∈ B ⇐⇒
the angle (p, q, r) is approximately π, say ∈ [π − δ, π + δ].

(There are many other possibilities.)
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Statistical analysis

I Local analysis: Given center point c , V.C.-dimension of set of

all star-shaped sets with center point c is the width of the

binary relation B(c , ·, ·).

I Stylization parameter δ controls the width of B(c , ·, ·).

I ’Local’ V.C.-dimension of S is thus controlled with δ.

I Global analysis: Maximally n center points: growth function is

controlled.

I ’Uniform’ control of the V.C.-dimension possible.

I  Variation of ’local’ V.C.-dimension is low.

I  V.C.-entropy less dependent on P?

I How does this V.C.-analysis driven regularization compare to

more classical regularization where some notion of

’smoothness of functions’ is used (e.g., total variation for

ternary relations)
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Behavior (gene expression dataset, n = 80, p = 23271)

N cwsb linear svm radial basis svm k-nearest neighbors

10 0.21 0.27 0.46 0.45

25 0.12 0.11 0.49 0.43

50 0.08 0.05 0.21 0.40

75 0.07 0.04 0.11 0.37
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Behavior (gene expression dataset showing anti-learning beha-

vior, n = 16, p = 10944)

anti-learning:

training accuracy ≥ random guessing accuracy ≥ off-training accuracy

cwsb linear svm radial basis svm k-nearest neighbors

0.33 0.69 0.72 0.44
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Behavior (synthetic model of perfect antilearning plus noise,

p = 300, cf., Kowalczyk [2007])

N cwsb linear svm radial basis svm k-nearest neighbors

10 0.01 0.64 0.65 0.99

50 0.01 0.47 0.44 0.78
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