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Motivation

Let Y = β0 + β1 · X + ε be the classical simple linear model and let
x = (x1, . . . , xn)

′ and y = (y1, . . . yn)
′ be i .i .id . samples from the model

and z = (1, x) the corresponding design matrix.
The least squares estimator is given by:

β̂ls = (z ′z)−1z ′y

and is linear in y but not linear in x .
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Partially Identified Models

• If either X or Y or both X and Y are only observed in intervals, the
model becomes generally only partially identified.

• One possible approach to cope with interval valued data is to simply
collect the obtained estimates from a classical procedure for all
precise data compatible with the observed intervals.

• If only Y is interval-valued, because of the linearity of the least
squares estimator, for the application of least squares, this collection
is easy enough to calculate

• If also X is interval-valued, the calculation of this collection is very
hard.

• For other more sophisticated estimators the problem is getting worse.
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Another estimator
Theil-Sen estimator (simplest form, only slope):

β̂1 = mediani 6=j βi,j
1

with
βi,j

1 =
yj − yi

xj − xi
.

For i 6= j it is simple to calculate the upper bound βi,j
1u and the lower

bound βi,j
1l of βi,j

1 as the precise data xi , xj and yi , yj varies in between
the observed intervals. Because the median is a monotone function of the
data one can simply calculate

β̂1u = mediani 6=j βi,j
1u

β̂1l = mediani 6=j βi,j
1l

as (non sharp) bounds for the maximal and minimal values for the
Theil-Sen estimator.
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Problem:
These bounds are not sharp because one data point (xi , yi ) has impact on
many different βi,j

1 at the same time, but the maximization/minimization
of the βi,j

1 was done independently from each other for every i 6= j .
Idea: Choose not all pairs (i , j) with i 6= j but a set M of pairs (i , j) such
that every i and j occurs only exactly one time to obtain

β̂M
1u = median(i,j)∈M βi,j

1u

β̂M
1l = median(i,j)∈M βi,j

1l .

In fact, β̂M
1u β̂

M
1l actually correspond to specific data points compatible

with the interval data for which this „freely“ maximized/minimized values
are actually obtained, so the bounds are sharp for the modified estimator

β̂M
1 := median(i,j)∈M βi,j

1

(but the estimator β̂M
1 is often less efficient than β̂1).
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Further modifications:

• use not only the median but other monotone location estimators and

• weight the βi,j
1 such that the variability of the obtained estimator is

minimal.
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Example: weighted mean, precise case

Let x1, . . . , xn be already in increasing order. For maximal efficiency of β1

take

M = {(1,N), (2,N − 1), . . . (N/2,N/2+ 1)}

and the weight for βi,j
1 proportional to (xj − xi )

2.
For the intercept take

βi,j
0 = yi − βi,j

1 · xi (= yj − βi,j
1 · xj).

( And for an arbitrary linear combination 〈d , β〉 = d0β0 + d1β1 take
βi,j

d = d0β
i,j
0 + d1β

i,j
1 .)

Then choose weights that minimize the variability of the corresponding
estimator of β0 (or βd).
=⇒ The obtained estimator is then a linear form in y .
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Example: x = (1, 2, . . . , 10)
Estimation-matrix of least squares estimator:
(

0.40 0.33 0.27 0.20 0.13 0.07 0.00 −0.07 −0.13 −0.20
−0.05 −0.04 −0.03 −0.02 −0.01 0.01 0.02 0.03 0.04 0.05

)

Variability under homoscedastic errors: β0 : 7
15σ

2 ≈ 0.467σ2

β1 : 12
990σ

2 ≈ 0.012σ2

Estimation matrix of free weighted mean estimator:

(
0.48 0.40 0.29 0.17 0.05 −0.04 −0.10 −0.11 −0.09 −0.05
−0.05 −0.04 −0.03 −0.02 −0.01 0.01 0.02 0.03 0.04 0.05

)

Variability under homoscedastic errors: β0 : 7
15σ

2 ≈ 0.533σ2

β1 : ≈ 0.012σ2

=⇒ Efficiency of free weighted mean estimator: β0 : ≈ 0.88
β1 : 1
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Example: X1, . . . ,X100 ∼ N (10, 1), Entries of the Estimation matrix
(index corresponds to the ordered covariate values):
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expected relative efficiency:
≈ 0.98 ≈ 0.99
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Example: X1, . . . ,X100 ∼ Exp(1):
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expected relative efficiency:
≈ 0.56 ≈ 0.83
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Relative efficiency for different settings and estimators
(precise case)

Different settings (N = 1000,X1, . . . ,Xn ∼ N (0, 1)):

1 standard setting

2 outliers in dependent variable („one wild“: 10% of data randomly
chosen and values multiplied by 10)

3 outliers in independent variable

4 error term t-distributed with 3 degrees of freedom

5 error term standard cauchy distributed
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Different Estimators:

1 least squares

2 robust M-estimator rlm (psi = psi.huber)

3 MM-type estimator with bi-square redescending score function (with
50% breakdown point and 95% asymptotic efficiency for normal
errors)

4 least quantile of squares (lqs, q=0.5)

5 different „free“ estimators based on :
1 median
2 weighted median
3 trimmed weighted Hodges-Lehmann estimator with winsorized

weights (wwthl)
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estimated relative efficiencies based on nrep = 10000 samples:

setting lm weighted median wwthl median lqs rlm lmrob
1 1.00 0.53 0.61 0.40 0.08 0.95 0.95
2 0.00 0.08 0.27 0.09 0.12 0.11 1.00
3 0.00 0.00 0.06 0.01 0.11 0.00 1.00
4 0.55 0.57 0.59 0.42 0.21 1.00 1.00
5 0.00 0.48 0.41 0.36 0.68 0.79 1.00

Utilizing Support Functions and Monotone Location Estimators for the Estimation of Partially Identified Regression Models



Imprecise case
• For maximal/minimal β̂M

0 , β̂
M
1 take bounds as described above.

• If one is interested in the whole identification region IR and not only
in projections one can work with support functions and estimate for
every d ∈ R2 the value of sup

β∈IR
〈d , β〉 as

βdu = sup
x∈[x,x],y∈[y,y]

βd

with
βd = l

(
β1,N

d , β2,N−1
d . . . , β

N
2 ,

N
2 +1

d

)
where l is an appropriate monotone location estimator (with weights
w(d) minimizing variability).

• The obtained estimate of the support function of the identified set is
then generally no longer a support function of some set.

=⇒ Project the estimated function onto the space of support functions
in a certain way.
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Example

Identification regions for different estimators illustrated as the predicted
boundaries inf

β∈IR
β0 + β1x and sup

β∈IR
β0 + β1x for different covariate values

x , where X1, . . . ,X50 ∼ N (0, 1), Y = X − 1,Y = X + 1.
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Minimal slope for lmrob:
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Minimal slope for lmrob:
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