Quantiles for Complete Lattices

Georg Schollmeyer

Department of Statistics, LMU Munich

November 18, 2013

Motivation

- Analysis of set-valued estimators
- Construction of confidence sets for set-valued estimators
- More general applications thinkable

Order theory

Definition

A **partially ordered set** (poset) $\mathbb{A} = (A, \leq)$ is a set A with a relation \leq that is reflexive, transitive and antisymmetric. A poset is called **lattice** if every two elements have a least upper bound (supremum, join) and a greatest lower bound (infimum, meet). It is called **complete lattice** if every arbitrary set has a join and a meet.

Example:

Definition

Let $(\mathbb{A}, \mathcal{F}, m)$ be a probability space where \mathbb{A} is a partially ordered set. If \mathcal{F} contains all principal ideals $\downarrow x$ then the corresponding belief function $B_m : \mathbb{A} \longrightarrow [0, 1]$ is defined as

$$B_m(x) := m(\downarrow x) = m(\{y \in \mathbb{A} \mid y \leq x\}).$$

An element $a \in A$ is called an α -quantile (for m) if $B_m(a) = \alpha$ and a is minimal in $B_m^{-1}(\alpha)$. It is called **quantile** (for m) if it is an α -quantile for some α . If we have only $B_m(a) = \alpha$ we say that a is an α -prequantile.

$$B_m^{-1}(lpha)$$
 :

Lemma

Let $(\mathbb{A}, \mathcal{F}, m)$ be a probability space (for which all principal ideals $\downarrow x$ are measurable). The set

$$\mathfrak{Q} := \{a \in \mathbb{A} \mid a \text{ is minimal in } B_m^{-1}(B_m(a))\}$$

of all quantiles is a kernel system. (A kernel system is a nonempty system that is closed under arbitrary joins and contains the smallest element \perp .)

Remark

More generally for a monotone and supermodular mapping $B : \mathbb{A} \longrightarrow \mathbb{M}$ in a partially ordered quasi cancellative monoid \mathbb{M} the system

$$\mathfrak{Q} := \{a \in \mathbb{A} \mid a \text{ is minimal in } B^{-1}(B(a))\}$$

is a kernel system.

Lemma

Let $(\mathbb{A}, \mathcal{F}, m)$ be a probability space (for which all principal ideals $\downarrow x$ are measurable). The set

$$\mathfrak{Q} := \{ a \in \mathbb{A} \mid a \text{ is minimal in } B_m^{-1}(B_m(a)) \}$$

of all quantiles is a kernel system. (A kernel system is a nonempty system that is closed under arbitrary joins and contains the smallest element \perp .)

Corollary

Let a be an α -prequantile. Then

$$k_{B_{m{m}}}(a):=igvee_{q\in\mathfrak{Q},q\leq a}q$$

is a quantile.

Question: $B_m(k_{B_m}(a)) = \alpha$?

Definition

A complete lattice \mathbb{A} is called **linearly order colindelöf** if every chain C contains an at most countable subchain S with

$$\bigwedge S = \bigwedge C.$$

Lemma

Let a be an α -prequantile. Then

$$k_{B_{m{m}}}(a):=igvee_{q\in\mathfrak{Q},q\leq a}q$$

is a quantile. If $\mathbb A$ is linearly order colindelöf then

 $B(k_{B_m}(a)) = \alpha.$

Remark

This also works with a monotone and supermodular function $B : \mathbb{A} \longrightarrow [0, 1]$ induced by a (not necessarily nonnegative) möbius inverse that is continuous from above.

Example

- $\mathbb{A}=(2^{[0,1]},\subseteq)$ is not linearly order colindelöf:
 - Take the set of all cocountable subsets of [0, 1] and choose a maximal chain in this set. (This is possible because of Zorn's lemma.)
 - Then ∧ T = Ø because if there was an element x ∈ ∧ T, the chain T ∪ {∧ T \{x}} would be a strict superchain of T which contradicts the maximality of T.
 - For a countable subchain S we have (∧ S)^c = ∨{s^c | s ∈ S} which is a countable union of countable sets, thus countable.
 - So $\bigwedge S$ must be uncountable and thus nonempty.
 - This shows that there does not exist any countable subchain S with $\bigwedge S = \bigwedge T$.

Example

Furthermore there exists a probability measure m on

$$\mathcal{F} := \{S \subseteq \mathcal{B}([0,1]) \mid \{a \in S \mid |a|=1\} \in \mathcal{B}([0,1])\}$$

such that $B_m^{-1}(1)$ has no minimal elements. Take for example $m: \mathcal{F} \longrightarrow [0,1]: A \mapsto \lambda(\{x \in [0,1] \mid \{x\} \in A\})$ with λ the Lebesgue measure. It is clear that every set $X \in B_m^{-1}(1)$ has uncountably many elements and for an arbitrary element $x \in X$ we have $X \setminus \{x\} \in B_m^{-1}(1)$ which means that there cannot be minimal elements in $B_m^{-1}(1)$.

Representation invariance

Definition

A mapping $f : \mathscr{P}(\mathbb{A}) \longrightarrow \mathbb{A}$ is called **representation invariant** if for every (bimeasurable) order automorphism Ψ on \mathbb{A} and every map $g \in \mathscr{P}(\mathbb{A})$ we have

$$f(g) = \Psi(f(g \circ [\Psi]))$$

with

$$[\Psi]: \mathcal{F} \longrightarrow \mathcal{F}: X \mapsto \Psi[X] := \{\Psi(x) \mid x \in X\}.$$

Lemma

Let $f : \mathscr{P}(\mathbb{A}) \longrightarrow \mathbb{A}$ be a representation invariant map. Then the mapping

$$f_k: \mathscr{P}(\mathbb{A}) \longrightarrow \mathbb{A}: m \mapsto k_{B_m}(f(m)) = \bigvee \{q \mid q \in \mathcal{K}_{B_m}, q \leq f(m)\}$$

is a representation invariant, quantile-valued mapping.

Weak quantiles

Definition

Let $m : \mathcal{F} \longrightarrow [0,1]$ be a probability measure (where all principal ideals are measurable) and let \mathcal{C} be a class of functions with domain \mathbb{A} and partially ordered codomains. We say that $a \in \mathbb{A}$ is a weak α quantile (for m) if it is a minimal element of the set

$$\{x \in \mathbb{A} \mid \forall f \in \mathcal{C} : m(f^{-1}(\downarrow (f(x)))) \ge \alpha \& \exists g \in \mathcal{C} : m(g^{-1}(\downarrow (g(x)))) = \alpha\}.$$

Analogously *a* is called **weak quantile** (with respect to C and *m*) if it is a weak α -quantile for some α .

Weak quantiles

What about representation invariant weak quantile mappings?