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Situation

Situation: Simple Linear model Y = By + 31X + & with interval-censored

outcomes.
@ Y unobserved, only Y and Y observed and all we know is Y € [Y,Y].

model partially identified, there are many parameters (g, 1) leading to the

(]
same distribution of the observable random variables (X,Y,Y).

Object of interest: The true parameter vector B = (3o, f1)-




Object of interest: The true parameter vector (So, 31)-

Problem: Because the model is only partially identified, there do not exist
consistent classical point estimators for (3o, £1)-
‘Solution’: Try to estimate some (preferably sharp) set that contains the true

parameter.

The set of all parameters (3o, 31) that are compatible with the model
assumptions and (the distribution of) the observable random variables is
called identified set.

Aim Here: Try to estimate the identified set.

Different understandings of the linear model (descriptive vs structural) lead
to different identification regions and estimators.




Descriptive vs structural models (cf. Freedman, 1987)

Here:

@ Descriptive linear model in the sense of the best linear predictor (blp) under
squared loss: Find (estimate) that prediction function f linear in X that
minimizes expected squared loss.

@ Structural linear model in the sense that the conditional expectation of Y
given x is assumed to be truly a linear function in x: Find (estimate) the
intercept and slope of this truly linear relationship.



Different approaches

@ Moment inequality approach (Chernozhukov, Hong & Tamer, ECMA, 2007)

@ Cautious data completion approach (Beresteanu, Molchanov, Molinari,
ECMA, 2011, Cerny, Rada, Meas. Sci. Rev., 2011)

© Approach based on the minimization of a set-domained loss function
(Schollmeyer, Augustin, 1JAR, 2015)



Moment inequality approach (chemoshukos. Hong & Tamer, Ecma, 2007)

1) Approach based on a criterion function @ : R> — Rxq that characterizes the
identified set (marrow region, MR) as

MR = {(ﬁo,ﬁl) S R2 | Q((ﬁmﬁl)) = 0}

Then MR can be estimated via an empirical analogue @, of Q as

MR = {(Bo, B1) | Qu((Bo, 1)) = 0}

or as

MR = argmin Q,((5o, 1))
(Bo,B1)

or as

MR = {(Bo, B1) € R? | @u((Bo, £1)) < ¢}

for some 'appropriately’ choosen value c.



|dentification regions for the simple linear model

a) Marrow Region (model understood as structural model):

MR(Y,Y) = {B | E(Y.| X) < Bo + BrX <E(Y | X)}
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|dentification regions for the simple linear model

a) Marrow Region: MR(X7V) = {(ﬂ07ﬂ1) | Q(ﬂ07181) = 0} with
Q(Bo, f1) = /(E(X | X) = (Bo + B1X))% + (E(Y | X) — (Bo + B1X))2dP(x)

E(k)




Molch , Molinari, ECMA, 2011,

Cautious data completion approach ® el s e "si rev. a011)

2) Cautious data completion: collect all best linear predictors for all random
variables (X, Z) compatible with the observable random variables (X,Y,Y).



|dentification regions for the simple linear model

b) Collection Region (model understood as descriptive model, collection of all
blp’s):
CR(Y,Y) = {argminE((Bo + /1 X — 2)?) | Z € [Y, Y]}
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Approach based on the minimization of a set-domained loss

fu nCtIOﬂ (Schollmeyer, Augustin, 1JAR, 2015)

3) Approach based on minimizing a set-domained loss function: Find that set I’
for which the predicted boundaries

sup Bo + Bix
ger

and

;Iagfr Bo + Bix

are close to the observable boundaries Y and Y in terms of minimal expected
loss.



Set-loss Region: Looking at the identified set rigorously as a set.

Set-loss Region (model understood as descriptive model, in a sense "best
set-valued predictor"):
2

/ (15(7 1) —sup B +51x])2 4 <IE(X %) = inf [60 + ﬁlx]) dP(x)

SR(Y,Y) = | JargminLs(Y,Y,T)

rCRr2
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Set-loss Region

Set-loss Region:

2

Ls(Y,Y,I) = / <]E(7 [ x) — 2};!? [Bo + /31X])2 + (E(X | x) — éfgr [Bo + 51x]> dP(x)

SR(Y,Y) = | JargminLs(Y,Y,T)
rCRr2
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Set-loss Region

Set-loss Region:

LS (Xa 77 r)
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Set-loss Region

Set-loss Region:

2

Ls(Y,Y,I) = / <]E(7 [ x) — 2};!? [Bo + /31X])2 + (E(X | x) — éfgr [Bo + 51x]> dP(x)

SR(Y,Y) = | JargminLs(Y,Y,T)
rCRr2
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Problems

@ The sharp marrow region is not continuously dependent on the conditional
expectations E(Y | X).

@ Collection Region: Is the collection of descriptive models still a reasonable
descriptive model itself?
Not in every case.

@ Set-loss region: Is it a reasonable, not too 'big’ set that contains the true
parameter in the case of a correctly specified linear (structural) model?
It always contains the true parameter if the model is correctly specified, but
sometimes it is bigger as e.g., the collection region that also contains the true
parameter.



Data example: Allbus 2014 (Only for illustration)

Example (Allbus 2014): age and (transformed) income of people from former
West Germany aged from 18 to 35.

@ x: age in years
o y = log( monthly net income in Euro — 1000):  transformed income
@ n = 559 people (for the sake of simplicity, non-response was ignored here)

@ 40 persons (7%) gave only categorized answers for income.
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	The Problem

