A note on sharp identification regions

Definition

Let $P:=\left\{\mathbb{P}_{\theta} \mid \theta \in \Theta\right\}$ be a statsitical model and

- Y, \ldots unobservable random variables,
- X, $\underline{Y}, \bar{Y}, \ldots$ observable random variables w.r.t an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- The joint distribution of the random Variables $X, Y, \underline{Y}, \bar{Y}$ under a model P_{θ} is denoted with F_{θ} and the joint distribution under the ,,true model" \mathbb{P} is denoted with $F^{X, Y, \underline{Y}, \bar{Y}}$.
- The unobserved variables fullfill a certain condition $C(X, Y, \underline{Y}, \bar{Y})=1$. e.g. $\underline{Y} \leq Y \leq \bar{Y} \quad$ or $\quad \forall X: \mathbb{E}(\underline{Y} \mid X) \leq \mathbb{E}(Y \mid X) \leq \mathbb{E}(\bar{Y} \mid X)$.

Definition

- Two parameters θ_{1} and θ_{2} are undistinguishable (i.e. $\theta_{1} \sim \theta_{2}$) if the corresponding models $\mathbb{P}_{\theta_{1}}$ and $\mathbb{P}_{\theta_{2}}$ are empirically undistinguishable, which means, that the distributions of the observable variables are the same:

$$
F_{\theta_{1}}^{X, \underline{Y}, \bar{Y}}=F_{\theta_{2}}^{X, \underline{Y}, \bar{Y}} .
$$

Definition

A statistical model P is called point-identified, if any two different parameters θ_{1} and θ_{2} are empirically distinguishable, i.e.:

$$
\sim=\Delta_{\Theta}=\{(\theta, \theta) \mid \theta \in \Theta\}
$$

Otherwise it is called partially identified.

Example

The simple linear model

$$
\Theta=B \times \mathbb{R}_{\geq 0} \times \mathcal{Z}\left(\mathbb{R}_{\geq 0}\right) \times \mathcal{Z}\left(\mathbb{R}_{\geq 0}\right)
$$

with $B=\mathbb{R}^{2}$. For $\theta=\left(\beta, \sigma^{2}, \sigma_{l}, \sigma_{u}\right) \in \Theta$, the random variables are defined as:

$$
\begin{aligned}
& Y=X \beta+\varepsilon \\
& \underline{Y}=X \beta+\varepsilon-\sigma_{I} \\
& \overline{\mathbf{Y}}=X \beta+\varepsilon+\sigma_{u}
\end{aligned}
$$

with $\varepsilon \sim N\left(0, \sigma^{2} I\right)$.

Example

The simple linear model

$$
\Theta=B \times \mathbb{R}_{\geq 0} \times \mathcal{Z}\left(\mathbb{R}_{\geq 0}\right) \times \mathcal{Z}\left(\mathbb{R}_{\geq 0}\right)
$$

with $B=\mathbb{R}^{2}$. For $\theta=\left(\beta, \sigma^{2}, \sigma_{l}, \sigma_{u}\right) \in \Theta$, the random variables are defined as:

$$
\begin{aligned}
& Y=X \beta+\varepsilon \\
& \underline{Y}=X \beta+\varepsilon-\sigma_{I} \\
& \bar{Y}=X \beta+\varepsilon+\sigma_{u}
\end{aligned}
$$

with $\varepsilon \sim N\left(0, \sigma^{2} I\right)$.
Here we are only interested in the values of $\beta \in B$.

This model is only partially identified. For example

$$
\left(\left(\beta_{0}, \beta_{1}\right), \sigma^{2}, 0,1\right) \quad \sim\left(\left(\beta_{0}+1, \beta_{1}\right), \sigma^{2}, 1,0\right)
$$

This model is only partially identified. For example

$$
\left(\left(\beta_{0}, \beta_{1}\right), \sigma^{2}, 0,1\right) \quad \sim\left(\left(\beta_{0}+1, \beta_{1}\right), \sigma^{2}, 1,0\right)
$$

Moreover, the quotient space $\Theta_{/ \sim}$ ist not of the form

$$
\Theta_{/ \sim}=B / \approx \times{ }^{\prime} \text { rest", }
$$

so we must factorize the whole space Θ and not only the interesting B to make the model point-identified.

Estimation

 Model \longrightarrow Pediction

Estimation

 Model \longrightarrow Pediction

 ,,model as a truth to be estimated ,,model as a tool to be applied"
Estimation

 Model \longrightarrow Pediction

,,model as a truth to be estimated
,,model as a tool to be applied"
e.g.: least squares estimator $\longleftarrow \quad$ linear model \longrightarrow best linear predictor

＂Estimation＂

Given distribution F^{Y} of Y of the class $\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$ ，

"Estimation"

Given distribution F^{Y} of Y of the class $\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$, find (all) θ, such that

$$
Y \sim F_{\theta}
$$

"Estimation"

Given distribution F^{Y} of Y of the class $\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$, find (all) θ, such that

$$
\begin{array}{ll}
& Y \sim F_{\theta} \\
\Leftrightarrow & F^{Y}=F_{\theta}^{Y}
\end{array}
$$

"Estimation"

Given distribution F^{Y} of Y of the class $\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$, find (all) θ, such that

$$
\begin{array}{ll}
& Y \sim F_{\theta} \\
\Longleftrightarrow & F^{Y}=F_{\theta}^{Y} \\
\Longleftrightarrow & L\left(F_{\theta}^{Y}, F\right)=0
\end{array}
$$

for some distance-function $L(\cdot, \cdot)$.

„Prediction"

$$
\text { Given } F^{Y} \text { of the class }\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\} \text {, }
$$

„Prediction"

$$
\begin{aligned}
& \text { Given } F^{Y} \text { of the class }\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\} \\
& \text { find (all) } \theta \text {, such that } \\
& \qquad L\left(F_{\theta}, F^{Y}\right)
\end{aligned}
$$

is minimal.

„Prediction"

$$
\begin{aligned}
& \text { Given } F^{Y} \text { of the class }\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\} \\
& \text { find (all) } \theta \text {, such that } \\
& \qquad L\left(F_{\theta}, F^{Y}\right)
\end{aligned}
$$

is minimal.

- also makes sense, if $F^{Y} \notin\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$.

„Prediction"

Given F^{Y} of the class $\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$,
find (all) θ, such that

$$
L\left(F_{\theta}, F^{\curlyvee}\right)
$$

is minimal.

- also makes sense, if $F^{\curlyvee} \notin\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$.
- if the model is correctly specified, then „prediction" and „estimation" are ,,nearly the same".

„Prediction"

Given F^{Y} of the class $\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$,
find (all) θ, such that

$$
L\left(F_{\theta}, F^{\curlyvee}\right)
$$

is minimal.

- also makes sense, if $F^{Y} \notin\left\{F_{\theta}^{Y} \mid \theta \in \Theta\right\}$.
- if the model is correctly specified, then „prediction" and „estimation" are ,,nearly the same".

The actual problem is, that F^{\curlyvee} is unknown \Longrightarrow later.

Definition

Let $P=\left\{\mathbb{P}_{\theta} \mid \theta \in \Theta\right\}$ be a statistical model with the corresponding joint distributions $\left\{F_{\theta}^{X, Y, \underline{Y}, \bar{Y}} \mid \theta \in \Theta\right\}$ and $X, \underline{Y}, \bar{Y}$ random variables with the joint distribution $F^{X, \underline{Y}, \bar{Y}}$. The Sharp Estimation Region (SER) is defined as:

Definition

Let $P=\left\{\mathbb{P}_{\theta} \mid \theta \in \Theta\right\}$ be a statistical model with the corresponding joint distributions $\left\{F_{\theta}^{X, Y, \underline{Y}, \bar{Y}} \mid \theta \in \Theta\right\}$ and $X, \underline{Y}, \bar{Y}$ random variables with the joint distribution $F^{X, Y, Y}$. The Sharp Estimation Region (SER) is defined as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y}):=\{\theta \in \Theta \mid C(X, Y, \underline{Y}, \bar{Y})=1\} .
$$

Definition

Let $P=\left\{\mathbb{P}_{\theta} \mid \theta \in \Theta\right\}$ be a statistical model with the corresponding joint distributions $\left\{F_{\theta}^{X, Y, \underline{Y}, \bar{Y}} \mid \theta \in \Theta\right\}$ and $X, \underline{Y}, \bar{Y}$ random variables with the joint distribution $F^{X, Y, Y}$. The Sharp Estimation Region (SER) is defined as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y}):=\{\theta \in \Theta \mid C(X, Y, \underline{Y}, \bar{Y})=1\} .
$$

If the model is correctly specified, this region can also be written as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y})=\underset{\theta \in \Theta}{\operatorname{argmin}}\left(\inf _{Y_{s . t} . C(X, Y, \underline{Y}, \bar{Y})=1} L\left(F_{\theta}, F^{X, Y, \bar{Y}, \underline{Y}}\right)\right) .
$$

Definition

Let $P=\left\{\mathbb{P}_{\theta} \mid \theta \in \Theta\right\}$ be a statistical model with the corresponding joint distributions $\left\{F_{\theta}^{X, Y, \underline{Y}, \bar{Y}} \mid \theta \in \Theta\right\}$ and $X, \underline{Y}, \bar{Y}$ random variables with the joint distribution $F^{X, Y, Y}$. The Sharp Estimation Region (SER) is defined as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y}):=\{\theta \in \Theta \mid C(X, Y, \underline{Y}, \bar{Y})=1\} .
$$

If the model is correctly specified, this region can also be written as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y})=\underset{\theta \in \Theta}{\operatorname{argmin}}\left(\inf _{Y_{s, t . C}(X, Y, \underline{Y}, \bar{Y})=1} L\left(F_{\theta}, F^{X, Y, \bar{Y}, \underline{Y}}\right)\right) .
$$

The Sharp Prediction Region (SPR) is defined as:

Definition

Let $P=\left\{\mathbb{P}_{\theta} \mid \theta \in \Theta\right\}$ be a statistical model with the corresponding joint distributions $\left\{F_{\theta}^{X, Y, \underline{Y}, \bar{Y}} \mid \theta \in \Theta\right\}$ and $X, \underline{Y}, \bar{Y}$ random variables with the joint distribution $F^{X, Y, \bar{Y}}$. The Sharp Estimation Region (SER) is defined as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y}):=\{\theta \in \Theta \mid C(X, Y, \underline{Y}, \bar{Y})=1\} .
$$

If the model is correctly specified, this region can also be written as:

$$
\operatorname{SER}(\underline{Y}, \bar{Y})=\underset{\theta \in \Theta}{\operatorname{argmin}}\left(\inf _{Y_{s} \text {.t. } C(X, Y, \underline{Y}, \bar{Y})=1} L\left(F_{\theta}, F^{X, Y, \bar{Y}, \underline{Y}}\right)\right) .
$$

The Sharp Prediction Region (SPR) is defined as:

$$
\operatorname{SPR}(\underline{Y}, \bar{Y}):=\left\{\underset{\theta \in \Theta}{\operatorname{argmin}} L\left(F_{\theta}, F^{X, Y, \bar{Y}, \underline{Y}}\right) \mid Y \text { s.t. } C(X, Y, \underline{Y}, \bar{Y})=1\right\} .
$$

Now: Linear Model

We are only interested in the components $\left(\beta_{0}, \beta_{1}\right)$ of an element $\theta=\left(\left(\beta_{0}, \beta_{1}\right), \sigma^{2}, \sigma_{l}, \sigma_{u}\right) \in S E R$ and denote the set

$$
\left\{\left(\beta_{0}, \beta_{1}\right) \mid\left(\left(\beta_{0}, \beta_{1}\right), \sigma^{2}, \sigma_{l}, \sigma_{u}\right) \in S E R\right\}
$$

as the sharp estimation region (analogously for the sharp prediction region).

Linear Model

$$
\begin{aligned}
S E R & =\{\beta \in B \mid \mathbb{E}(\underline{Y} \mid X) \leq X \beta \leq \mathbb{E}(\overline{\mathrm{Y}} \mid X)\} \\
S P R & =\left\{\underset{\beta \in B}{\operatorname{argmin}} \mathbb{E}\left((X \beta-Y)^{2}\right) \mid Y \in[\underline{Y}, \bar{Y}]\right\} \\
& =\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} Y \mid Y \in[\underline{Y}, \bar{Y}]\right\}
\end{aligned}
$$

A note on sharp identification regions

A note on sharp identification regions

A note on sharp identification regions

Theorem
Let $I \subset \mathbb{R}^{2}$ be a compact convex set．Then there exist random variables $X, \underline{Y}, \bar{Y}$ such that

$$
\operatorname{SER}(X, \underline{Y}, \bar{Y})=I
$$

namely：

$$
\begin{aligned}
& X \sim N(0,1) \\
& \underline{Y}=\min \left\{\beta_{0}+\beta_{1} X \mid\left(\beta_{0}, \beta_{1}\right) \in I\right\} \\
& \underline{Y}=\max \left\{\beta_{0}+\beta_{1} X \mid\left(\beta_{0}, \beta_{1}\right) \in I\right\}
\end{aligned}
$$

Definition

The Minkowski-Sum

$$
M=\bigoplus_{i=1}^{n} I_{i}=\left\{\sum_{i=1}^{n} p_{i} \mid p_{i} \in I_{i}\right\}
$$

of n line-segments $l_{i} \subseteq \mathbb{R}^{d}$ is called a zonotope.
A zonotope is a convex, compact and centrally symmetric polytope with finite many extremepoints and central-symmetric facets.

Definition

The Minkowski-Sum

$$
M=\bigoplus_{i=1}^{n} I_{i}=\left\{\sum_{i=1}^{n} p_{i} \mid p_{i} \in I_{i}\right\}
$$

of n line-segments $I_{i} \subseteq \mathbb{R}^{d}$ is called a zonotope.
A zonotope is a convex, compact and centrally symmetric polytope with finite many extremepoints and central-symmetric facets.

Definition

A closed, centrally symmetric convex set $Z \subseteq \mathbb{R}^{d}$ is called a zonoid, if it can be approximated arbitrarily closely by zonotopes (w.r.t. a metric, e.g. the Hausdorff distance).
For $d=2$ the zonoids are exactly the closed, centrally symmetric convex sets.

Lemma

Let $I \subseteq \mathbb{R}^{2}$ be a zonoid in general position. Then there exists random variables $X, \underline{Y}, \bar{Y}$ such that

$$
\operatorname{SPR}(X, \underline{Y}, \bar{Y})=I
$$

Lemma

Let $I \subseteq \mathbb{R}^{2}$ be a zonoid in general position．Then there exists random variables $X, \underline{Y}, \bar{Y}$ such that

$$
\operatorname{SPR}(X, \underline{Y}, \bar{Y})=1 .
$$

Lemma

Let $I=\operatorname{SPR}\left(X, \underline{Y}^{*}, \bar{Y}^{*}\right) \subseteq \mathbb{R}^{2}$ be a zonoid and $E \subseteq \operatorname{SER}\left(X, \underline{Y}^{*}, \overline{\mathrm{Y}}^{*}\right)$ an arbitrary compact convex set．Then for every $\varepsilon>0$ there exist random variables $X, \underline{Y}, \bar{Y}$ such that：

$$
\begin{aligned}
d_{H}(\operatorname{SPR}(X, \underline{Y}, \bar{Y}), I) & \leq \varepsilon \\
d_{H}(\operatorname{SER}(X, \underline{Y}, \bar{Y}), E) & \leq \varepsilon
\end{aligned}
$$

with the Hausdorff distance d_{H} ．

๑ $9 \curvearrowright$

Mappings between ordered sets

Mappings between ordered sets

Definition

Let (P, \leq) and (Q, \sqsubseteq) be partially ordered sets. A pair (f, g) of mappings $f: P \longrightarrow Q$ and $g: Q \longrightarrow P$ is called adjunction, if:

$$
\forall p \in P \forall q \in Q: \quad p \leq g(q) \Longleftrightarrow f(p) \sqsubseteq q .
$$

In this case, f is called left adjoint and g is called right adjoint.

Examples of adjunctions

Examples of adjunctions

- Dempster-Shafer-Theory:

Multivalued mapping $\Gamma: X \longrightarrow 2^{S}$ with corresponding
$\tilde{\Gamma}:\left(2^{X}, \subseteq\right) \longrightarrow\left(2^{S}, \subseteq\right): A \mapsto \bigcup_{a \in A} \Gamma(a)$ and the operator
$*:\left(2^{S}, \subseteq\right) \longrightarrow\left(2^{X}, \subseteq\right): T \mapsto\{x \in X \mid \Gamma(x) \subseteq T\}$.
The pair $\left(\tilde{\Gamma},{ }_{*}\right)$ is an adjunction.
From this, the ∞-monotonicity of a Belief-function

$$
\mathrm{Bel}=P \circ *
$$

with P a probability-measure follows immediately, since P is ∞-monotone and * is meet-preserving. Furthermure it is clear, that also $\mathrm{Bel} \circ_{*}$ is ∞-monotone.

Examples of adjunctions

- Lower coherent previsions:
$f: \underline{P} \mapsto \mathcal{M}(\underline{P})=\{p \in \mathscr{P}(\Omega) \mid p \geq \underline{P}\}$ and
$g: M \mapsto \underline{P}_{M}: X \mapsto \inf _{p \in M} p(X)$ are an adjunction.

Examples of adjunctions

- Formal concept analysis:

Incidence structure $\mathbb{K}=(G, M, I)$ with $G \ldots$ objects, $M \ldots$ attributes and a relation $I \subseteq G \times M$. $(g, m) \in I$ means object g has attribute m (also denotad as glm).
$f:\left(2^{M}, \subseteq\right) \longrightarrow\left(2^{G}, \subseteq\right): X \mapsto\{g \in G \mid \forall m \in X: g / m\}$
",The set of all objects having all attributes in X"

$$
g:\left(2^{G}, \supseteq\right) \longrightarrow\left(2^{M}, \supseteq\right): Y \mapsto\{m \in M \mid \forall g \in Y: g / m\}
$$

"The set of all joint attributes of all objects in $Y^{\prime \prime}$.
The pair (f, g) is an adjunction.

Lemma

Let (f, g) be an adjunction. Then the following holds:
A1 $g \circ f$ is extensive and $f \circ g$ is intensive.

Lemma

Let (f, g) be an adjunction．Then the following holds：
A1 $g \circ f$ is extensive and $f \circ g$ is intensive．
A2 f and g are order－preserving．

Lemma

Let (f, g) be an adjunction．Then the following holds：
A1 $g \circ f$ is extensive and $f \circ g$ is intensive．
A2 f and g are order－preserving．
A3 $f \circ g \circ f=f$ and $g \circ f \circ g=g$ and thus $f \circ g$ and $g \circ f$ are idempotent．

Lemma

Let (f, g) be an adjunction. Then the following holds:
A1 $g \circ f$ is extensive and $f \circ g$ is intensive.
A2 f and g are order-preserving.
A3 $f \circ g \circ f=f$ and $g \circ f \circ g=g$ and thus $f \circ g$ and $g \circ f$ are idempotent.

A4 From A1-A3 it follows, that $g \circ f$ is a hull operator and $f \circ g$ is a kernel operator.

Lemma

Let (f, g) be an adjunction. Then the following holds:
A1 $g \circ f$ is extensive and $f \circ g$ is intensive.
A2 f and g are order-preserving.
A3 $f \circ g \circ f=f$ and $g \circ f \circ g=g$ and thus $f \circ g$ and $g \circ f$ are idempotent.

A4 From A1-A3 it follows, that $g \circ f$ is a hull operator and $f \circ g$ is a kernel operator.
A5 The adjoints f and g are determining each other unambiguously.

Lemma

Let (f, g) be an adjunction. Then the following holds:
A1 $g \circ f$ is extensive and $f \circ g$ is intensive.
A2 f and g are order-preserving.
A3 $f \circ g \circ f=f$ and $g \circ f \circ g=g$ and thus $f \circ g$ and $g \circ f$ are idempotent.
A4 From A1-A3 it follows, that $g \circ f$ is a hull operator and $f \circ g$ is a kernel operator.
A5 The adjoints f and g are determining each other unambiguously.
A6 f is join-preserving and g is meet-preserving.

Lemma

- If P is a complete lattice, than f is a left adjoint, if and only if f is join-preserving.
- If Q is a complete lattice, than g is a right adjoint, if and only if g is meet-preserving.

Lemma

The mapping

SER $:(\mathcal{Z}(\Omega), \leq) \longrightarrow\left(2^{B}, \subseteq\right):(X, \underline{Y}, \bar{Y}) \mapsto\{\beta \mid \mathbb{E}(\underline{Y} \mid X) \leq \beta X \leq \mathbb{E}(\bar{Y} \mid x)\}$
with

$$
\begin{aligned}
\left(X_{1}, \underline{Y}_{1}, \bar{Y}_{1}\right) \leq\left(X_{2}, \underline{Y}_{2}, \bar{Y}_{2}\right): \Longleftrightarrow & \\
& \text { i.e.: }\left(\underline{Y}_{1} \mid X\right) \geq \mathbb{E}\left(\underline{Y}_{2} \mid X\right) \& \mathbb{E}\left(\bar{Y}_{1}\right) \text { is more precise } \\
& \text { than }\left(X_{2}, \underline{Y}_{2}, \bar{Y}_{2}\right) \leq \mathbb{E}\left(\bar{Y}_{2} \mid X\right)
\end{aligned}
$$

is a right adjoint.

Lemma

The mapping

SER $:(\mathcal{Z}(\Omega), \leq) \longrightarrow\left(2^{B}, \subseteq\right):(X, \underline{Y}, \bar{Y}) \mapsto\{\beta \mid \mathbb{E}(\underline{Y} \mid X) \leq \beta X \leq \mathbb{E}(\bar{Y} \mid x)\}$ with

$$
\begin{aligned}
\left(X_{1}, \underline{Y}_{1}, \bar{Y}_{1}\right) \leq\left(X_{2}, \underline{Y}_{2}, \bar{Y}_{2}\right): \Longleftrightarrow & \mathbb{E}\left(\underline{Y}_{1} \mid X\right) \geq \mathbb{E}\left(\underline{Y}_{2} \mid X\right) \& \mathbb{E}\left(\bar{Y}_{1} \mid X\right) \leq \mathbb{E}\left(\bar{Y}_{2} \mid X\right) \\
& \text { i.e.: }\left(X_{1}, \underline{Y}_{1}, \bar{Y}_{1}\right) \text { is more precise } \\
& \text { than }\left(X_{2}, \underline{Y}_{2}, \bar{Y}_{2}\right)
\end{aligned}
$$

is a right adjoint.
The corresponding left adjoint is the ,,prediction-operator":

$$
P R: \quad\left(2^{B}, \subseteq\right) \longrightarrow(\mathcal{Z}(\Omega), \leq): M \mapsto\left(X, \min _{\beta \in M} X \beta, \max _{\beta \in M} X \beta\right)
$$

Lemma

Thus, the following holds:
$A 1 S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.
$\mathrm{A} 2 P R$ and $S E R$ are order-preserving.
A3 $P R \circ S E R \circ P R=P R$ and $S E R \circ P R \circ S E R=S E R$ and thus $P R \circ S E R$ and $S E R \circ P R$ are idempotent.
A4 From A1-A3 it follows, that $S E R \circ P R$ is a hull operator and $P R \circ S E R$ is a kernel operator.

A5 The adjoints $P R$ and SER are determining each other unambiguously.
A6 $P R$ is join-preserving and SER is meet-preserving.

Lemma

A1 $S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.

Lemma

A1 $S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.

Lemma

A1 $S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.

Lemma

A1 $S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.

Lemma

A1 $S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.

Lemma

Thus, the following holds:
$A 1 S E R \circ P R$ is extensive and $P R \circ S E R$ is intensive.
$\mathrm{A} 2 P R$ and $S E R$ are order-preserving.
A3 $P R \circ S E R \circ P R=P R$ and $S E R \circ P R \circ S E R=S E R$ and thus $P R \circ S E R$ and $S E R \circ P R$ are idempotent.
A4 From A1-A3 it follows, that $S E R \circ P R$ is a hull operator and $P R \circ S E R$ is a kernel operator.

A5 The adjoints $P R$ and SER are determining each other unambiguously.
A6 $P R$ is join-preserving and SER is meet-preserving.

Lemma

The mapping
$S P R:(\mathcal{Z}(\Omega), \leq) \longrightarrow\left(2^{B}, \subseteq\right):(X, \underline{Y}, \bar{Y}) \mapsto\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} Y \mid \underline{Y} \leq Y \leq \bar{Y}\right\}$
is no right adjoint, since it is not meet-preserving.
In general $\operatorname{SPR}\left(Z_{1} \wedge Z_{2}\right) \neq \operatorname{SPR}\left(Z_{1}\right) \cap \operatorname{SPR}\left(Z_{2}\right)$, since the intersection of two zonoids is in general not a zonoid.
Thus, in general, only $S P R \circ P R \circ S P R \supset S P R$ holds.

A note on sharp identification regions

A note on sharp identification regions

A note on sharp identification regions

Definition

Let $E:(P, \leq) \longrightarrow(Q, \sqsubseteq)$ be a mapping.
The monotone hull of E is defined as:

$$
H(E): \quad(P, \leq) \longrightarrow(Q, \sqsubseteq): X \mapsto \bigvee_{Y \leq X} E(Y)
$$

The monotone kernel of E is defined as:

$$
K(E):(P, \leq) \longrightarrow(Q, \sqsubseteq): X \mapsto \bigwedge_{Y \geq X} E(Y) .
$$

These set-valued mappings are both order-preserving (i.e: $X \leq Y \Longrightarrow(H(E))(X) \sqsubseteq(H(E))(Y) \quad \& \quad(K(E))(X) \sqsubseteq(K(E))(Y))$.

A criterion-function-based mapping

A criterion-function-based mapping

Lemma

Let the criterion-function $Q: B \longrightarrow \mathbb{R}$ be defined as:

$$
Q(\beta)=\int\left\{(\mathbb{E}(\underline{Y} \mid x)-x \beta)_{+}^{2}+(\mathbb{E}(\bar{Y} \mid x)-x \beta)_{-}^{2}\right\} d \mathbb{P}(x) .
$$

A criterion-function-based mapping

Lemma

Let the criterion-function $Q: B \longrightarrow \mathbb{R}$ be defined as:

$$
Q(\beta)=\int\left\{(\mathbb{E}(\underline{Y} \mid x)-x \beta)_{+}^{2}+(\mathbb{E}(\bar{Y} \mid x)-x \beta)_{-}^{2}\right\} d \mathbb{P}(x) .
$$

Then the criterion-based mapping

$$
E_{Q}: \mathcal{Z}(\Omega) \longrightarrow 2^{B}:(X, \underline{Y}, \bar{Y}) \mapsto \underset{\beta \in B}{\operatorname{argmin}} Q(\beta)
$$

is a source of SER and SPR:

A criterion-function-based mapping

Lemma

Let the criterion-function $Q: B \longrightarrow \mathbb{R}$ be defined as:

$$
Q(\beta)=\int\left\{(\mathbb{E}(\underline{Y} \mid x)-x \beta)_{+}^{2}+(\mathbb{E}(\bar{Y} \mid x)-x \beta)_{-}^{2}\right\} d \mathbb{P}(x) .
$$

Then the criterion-based mapping

$$
E_{Q}: \mathcal{Z}(\Omega) \longrightarrow 2^{B}:(X, \underline{Y}, \bar{Y}) \mapsto \underset{\beta \in B}{\operatorname{argmin}} Q(\beta)
$$

is a source of SER and SPR:

$$
\begin{aligned}
S P R & =H\left(E_{Q}\right) \\
S E R & =K\left(E_{Q}\right) .
\end{aligned}
$$

Estimation of SER and SPR

Estimation of SER and SPR

Lemma
In general, there is no monotone, nonpartial, consistent estimator of SER.

Estimation of SER and SPR

Lemma

In general, there is no monotone, nonpartial, consistent estimator of SER.

Lemma

In general, there is no consistent and (in a certain sense) robust estimator of SER.

Beresteanu, A., Molinari, F. (2008) Asymptotic Properties for a Class of Partially Identified Models, Econometrica, vol. 76, issue 4, pages 763-814.
\#
Chernozhukov, V., Hong, H., Tamer, E. (2007) Estimation and Confidence Regions for Parameter Sets in Econometric Models, Econometrica, vol. 75, issue 5, pages 1243-1284.
Bolker, E.D. (1971) The Zonoid Problem, The American Mathematical Monthly, vol. 78, no. 5, pages 529-531

