Linear models and partial identification:
 Imprecise linear regression with interval data

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$
Y^{*}=X \beta+\varepsilon
$$

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$
Y^{*}=X \beta+\varepsilon
$$

with a fixed design-matrix

$$
X=\left(\begin{array}{ccccc}
1 & X_{11} & X_{12} & \ldots & X_{1 p} \\
1 & X_{21} & X_{22} & \ldots & X_{2 p} \\
& & & \vdots & \\
1 & X_{n 1} & X_{n 2} & \ldots & X_{n p}
\end{array}\right),
$$

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$
Y^{*}=X \beta+\varepsilon
$$

with a fixed design-matrix

$$
X=\left(\begin{array}{ccccc}
1 & X_{11} & X_{12} & \ldots & X_{1 p} \\
1 & X_{21} & X_{22} & \ldots & X_{2 p} \\
& & & \vdots & \\
1 & X_{n 1} & X_{n 2} & \ldots & X_{n p}
\end{array}\right),
$$

a multivariat normal i.i.d. error ε

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$
Y^{*}=X \beta+\varepsilon
$$

with a fixed design-matrix

$$
X=\left(\begin{array}{ccccc}
1 & X_{11} & X_{12} & \ldots & X_{1 p} \\
1 & X_{21} & X_{22} & \ldots & X_{2 p} \\
& & & \vdots & \\
1 & X_{n 1} & X_{n 2} & \ldots & X_{n p}
\end{array}\right),
$$

a multivariat normal i.i.d. error ε and a dependend n dimensional random variable $Y^{*}=\left(Y_{1}^{*}, \ldots, Y_{n}^{*}\right)$,

The Problem

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$
Y^{*}=X \beta+\varepsilon
$$

with a fixed design-matrix

$$
X=\left(\begin{array}{ccccc}
1 & X_{11} & X_{12} & \ldots & X_{1 p} \\
1 & X_{21} & X_{22} & \ldots & X_{2 p} \\
& & & \vdots & \\
1 & X_{n 1} & X_{n 2} & \ldots & X_{n p}
\end{array}\right),
$$

a multivariat normal i.i.d. error ε and a dependend n dimensional random variable $Y^{*}=\left(Y_{1}^{*}, \ldots, Y_{n}^{*}\right)$, that is only known to lie in the intervall $[\underline{Y}, \bar{Y}]$ of the known random variables \underline{Y} and \bar{Y}.

A basic paradigm for solving the problem

One simple approach:

A basic paradigm for solving the problem

One simple approach:
look at all possible candidates Y for the unknown Y^{*} compatible with the restriction $Y \in[\underline{Y}, \bar{Y}]$

A basic paradigm for solving the problem

One simple approach:
look at all possible candidates Y for the unknown Y^{*} compatible with the restriction $Y \in[\underline{Y}, \bar{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

A basic paradigm for solving the problem

One simple approach:
look at all possible candidates Y for the unknown Y^{*} compatible with the restriction $Y \in[\underline{Y}, \bar{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

$$
\hat{s}:=\{\hat{\beta}(y) \mid y \in[\underline{y}, \bar{y}]\}
$$

A basic paradigm for solving the problem

One simple approach:
look at all possible candidates Y for the unknown Y^{*} compatible with the restriction $Y \in[\underline{Y}, \bar{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

$$
\hat{S}:=\{\hat{\beta}(y) \mid y \in[\underline{y}, \bar{y}]\}
$$

where \underline{y} and \bar{y} are n-dimensional samples from \underline{Y} and \bar{Y} and y is a n-dimensional vector satisfiying

$$
y_{i} \in\left[\underline{Y}_{i}, \bar{Y}_{i}\right], i=1, \ldots, n,
$$

A basic paradigm for solving the problem

One simple approach:
look at all possible candidates Y for the unknown Y^{*} compatible with the restriction $Y \in[\underline{Y}, \bar{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

$$
\hat{S}:=\{\hat{\beta}(y) \mid y \in[\underline{y}, \bar{y}]\}
$$

where \underline{y} and \bar{y} are n-dimensional samples from \underline{Y} and \bar{Y} and y is a n-dimensional vector satisfiying

$$
y_{i} \in\left[\underline{Y}_{i}, \bar{Y}_{i}\right], i=1, \ldots, n,
$$

which stands for a possible sample of Y compatible with the interval-valued observed data.

One possibility:

One possibility:

Choose the classical linear estimator

One possibility:

Choose the classical linear estimator

$$
\hat{\beta}(y)=\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

One possibility:

Choose the classical linear estimator

$$
\hat{\beta}(y)=\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

to get an estimate $\hat{\beta}(y)$ for all y.

Linear Regression with one covariate:

Linear Regression with one covariate:

$\hat{\beta}(y)=$

Linear Regression with one covariate:

$$
\hat{\beta}(y)=\binom{\beta_{0}}{\beta_{1}}
$$

Linear Regression with one covariate:

$$
\begin{aligned}
\hat{\beta}(y) & =\binom{\beta_{0}}{\beta_{1}} \\
& =\left(\begin{array}{cc}
1 & \bar{x} \\
\bar{x} & \overline{x^{2}}
\end{array}\right)^{-1}\left(\frac{\bar{y}}{\bar{x} \cdot y}\right)
\end{aligned}
$$

Linear Regression with one covariate:

$$
\begin{aligned}
\hat{\beta}(y) & =\binom{\beta_{0}}{\beta_{1}} \\
& =\left(\begin{array}{ll}
1 & \bar{x} \\
\bar{x} & \bar{x}^{2}
\end{array}\right)^{-1}\binom{\bar{y}}{\bar{x} \cdot y} \\
& =\left(\begin{array}{ll}
1 & \bar{x} \\
\bar{x} & \bar{x}^{2}
\end{array}\right)^{-1}\binom{\frac{1}{n} \sum_{i=1}^{n} y_{i}}{\frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot y_{i}}
\end{aligned}
$$

Linear Regression with one covariate:

$$
\begin{aligned}
& \hat{\beta}(y)=\binom{\beta_{0}}{\beta_{1}} \\
& =\left(\begin{array}{ll}
1 & \bar{x} \\
\bar{x} & x^{2}
\end{array}\right)^{-1}\binom{\bar{y}}{\bar{x} \cdot \bar{y}}
\end{aligned}
$$

Definition

The Minkowski Sum of two sets A, B in \mathbb{R}^{d} is defined as:

$$
A \oplus B:=\{a+b \mid a \in A, b \in B\} .
$$

Definition

The Minkowski Sum of two sets A, B in \mathbb{R}^{d} is defined as:

$$
A \oplus B:=\{a+b \mid a \in A, b \in B\} .
$$

The Minkowski Mean of n pointsets A_{1}, \ldots, A_{n} is defined as:

$$
\frac{1}{n} \bigoplus_{i=1}^{n} A_{i}:=\left\{\left.\frac{1}{n} \sum_{i=1}^{n} a_{i} \right\rvert\, a_{i} \in A_{i}, i=1, \ldots, n\right\}
$$

Example

The Minkowski Sum of two line segments in \mathbb{R}^{2} :

Example

The Minkowski Sum of two line segments in \mathbb{R}^{2} :

The calculation of $\hat{\beta}(y)$ for all $y \in[\underline{y}, \bar{y}]$ is nothing else than the computation of the linear image of the 2 dimensional minkowski mean of the n line segments p_{i} formed by the points $\left(\underline{y}_{i}, x_{i} \cdot \underline{\mathrm{y}}_{i}\right)$ and $\left(\overline{\mathrm{y}}_{i}, x_{i} \cdot \overline{\mathrm{y}}_{i}\right)$ under the mapping induced by the matrix P :

$$
\hat{S}=P \cdot\left(\frac{1}{n} \bigoplus_{i=1}^{n} p_{i}\right)
$$

The set-valued estimate \hat{S} has the following properties:

The set-valued estimate \hat{S} has the following properties:
a) it is

The set-valued estimate \hat{S} has the following properties:
a) it is (, as the linear image of a convex, bounded set)

The set-valued estimate \hat{S} has the following properties:
a) it is (, as the linear image of a convex, bounded set) convex and bounded.

The set-valued estimate \hat{S} has the following properties:
a) it is (, as the linear image of a convex, bounded set) convex and bounded.

The set-valued estimate \hat{S} has the following properties:
a) it has finite many extremepoints.

The set-valued estimate \hat{S} has the following properties:
b) it is central symmetric with the center $\hat{\beta}\left(\frac{\underline{y}+\overline{\mathrm{y}}}{2}\right)$.

The set-valued estimate \hat{S} has the following properties:
c) it is central symmetric with the center $\hat{\beta}\left(\frac{\underline{y}+\overline{\mathrm{y}}}{2}\right)$.

The set-valued estimate \hat{S} has the following properties:
c) it is central symmetric with the center $\hat{\beta}\left(\frac{\underline{y}+\overline{\mathrm{y}}}{2}\right)$.

The set-valued estimate \hat{S} has the following properties:
c) its facets are central symmetric, too.

The set-valued estimate \hat{S} has the following properties:
c) in geometry it is, as the Minkowski Sum of n line segments, called a zonotope.

Another way to look at the estimate \hat{S} (or a zonotope in general):

Another way to look at the estimate \hat{S} (or a zonotope in general):

$$
\hat{S}=\{A \cdot y \mid y \in[\underline{y}, \overline{\mathrm{y}}]\}
$$

Another way to look at the estimate \hat{S} (or a zonotope in general):

$$
\hat{S}=\{A \cdot y \mid y \in[\underline{y}, \overline{\mathrm{y}}]\}
$$

is the linear image of a n-dimensional cuboid

Another way to look at the estimate \hat{S} (or a zonotope in general):

$$
\hat{S}=\{A \cdot y \mid y \in[\underline{y}, \overline{\mathrm{y}}]\}
$$

is the linear image of a n-dimensional cuboid or equivalently the affine linear image of the n-dimensional unit-cube:

Another way to look at the estimate \hat{S} (or a zonotope in general):

$$
\hat{S}=\{A \cdot y \mid y \in[\underline{y}, \bar{y}]\}
$$

is the linear image of a n-dimensional cuboid or equivalently the affine linear image of the n-dimensional unit-cube:

One can show:

One can show:

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\underline{y}, \bar{y}]$ and have the following structure:

One can show:

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\underline{y}, \bar{y}]$ and have the following structure:

$$
y=y_{\geq c}^{u}= \begin{cases}\bar{y}_{i} & \text { if } x_{i} \geq c \tag{1}\\ \underline{y}_{i} & \text { else }\end{cases}
$$

One can show:

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\mathrm{y}, \overline{\mathrm{y}}]$ and have the following structure:

$$
y=y_{\geq c}^{u}= \begin{cases}\bar{y}_{i} & \text { if } x_{i} \geq c \tag{1}\\ \underline{y}_{i} & \text { else }\end{cases}
$$

or

$$
y=y_{\geq c}^{\prime}= \begin{cases}\underline{y}_{i} & \text { if } x_{i} \geq c \tag{2}\\ \bar{y}_{i} & \text { else },\end{cases}
$$

for some $c \in \mathbb{R}$.

One can show:

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\mathrm{y}, \overline{\mathrm{y}}]$ and have the following structure:

$$
y=y_{\geq c}^{u}= \begin{cases}\bar{y}_{i} & \text { if } x_{i} \geq c \tag{1}\\ \underline{y}_{i} & \text { else }\end{cases}
$$

or

$$
y=y_{\geq c}^{\prime}= \begin{cases}\underline{y}_{i} & \text { if } x_{i} \geq c \tag{2}\\ \bar{y}_{i} & \text { else },\end{cases}
$$

for some $c \in \mathbb{R}$. Here we call these y pseudodata.

One can show:

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\mathrm{y}, \overline{\mathrm{y}}]$ and have the following structure:

$$
y=y_{\geq c}^{u}= \begin{cases}\bar{y}_{i} & \text { if } x_{i} \geq c \tag{1}\\ \underline{y}_{i} & \text { else }\end{cases}
$$

or

$$
y=y_{\geq c}^{\prime}= \begin{cases}\underline{y}_{i} & \text { if } x_{i} \geq c \tag{2}\\ \bar{y}_{i} & \text { else },\end{cases}
$$

for some $c \in \mathbb{R}$. Here we call these y pseudodata. It suffices to take only $c=x_{i}, i=1, \ldots, n$.
b) all pseudodata are mapped to the boundary of \hat{S}.
b) all pseudodata are mapped to the boundary of \hat{S}.
c) if there are no ties in x, then all pseudodata are actually mapped to extremepoints of \hat{S}.
b) all pseudodata are mapped to the boundary of \hat{S}.
c) if there are no ties in x, then all pseudodata are actually mapped to extremepoints of \hat{S}.
\Longrightarrow it suffices to look at all pseudodata instead of the whole cuboid to observe \hat{S} :
b) all pseudodata are mapped to the boundary of \hat{S}.
c) if there are no ties in x, then all pseudodata are actually mapped to extremepoints of \hat{S}.
\Longrightarrow it suffices to look at all pseudodata instead of the whole cuboid to observe \hat{S} :

$$
\hat{S}=\operatorname{co}\{A \cdot y \mid y \text { is a pseudodata }\}
$$

We have two perspectives on \hat{S}
(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_{1}, \ldots, p_{n}):

We have two perspectives on \hat{S}
(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_{1}, \ldots, p_{n}):

$$
\hat{S}=P \cdot\left(\frac{1}{n} \bigoplus_{i=1}^{n} p_{i}\right)
$$

We have two perspectives on \hat{S}
(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_{1}, \ldots, p_{n}):

$$
\hat{S}=P \cdot\left(\frac{1}{n} \bigoplus_{i=1}^{n} p_{i}\right)
$$

Since $\hat{S}=\left\{\left.P \cdot\binom{\frac{1}{n} \sum_{i=1}^{n} y_{i}}{\frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot y_{i}} \right\rvert\, y \in[\underline{y}, \bar{y}]\right\}$

We have two perspectives on \hat{S}
(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_{1}, \ldots, p_{n}):

$$
\hat{S}=P \cdot\left(\frac{1}{n} \bigoplus_{i=1}^{n} p_{i}\right)
$$

Since $\hat{S}=\left\{\left.P \cdot\binom{\frac{1}{n} \sum_{i=1}^{n} y_{i}}{\frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot y_{i}} \right\rvert\, y \in[\underline{y}, \bar{y}]\right\}$
we could understand \hat{S} as a point-estimator, which estimates the linear image of the (set-valued) so called Aumann Expectation

We have two perspectives on \hat{S}
(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_{1}, \ldots, p_{n}):

$$
\hat{S}=P \cdot\left(\frac{1}{n} \bigoplus_{i=1}^{n} p_{i}\right)
$$

Since $\hat{S}=\left\{\left.P \cdot\binom{\frac{1}{n} \sum_{i=1}^{n} y_{i}}{\frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot y_{i}} \right\rvert\, y \in[\underline{y}, \bar{y}]\right\}$
we could understand \hat{S} as a point-estimator, which estimates the linear image of the (set-valued) so called Aumann Expectation

$$
\left\{\left.\binom{\mathbb{E}(Y)}{\mathbb{E}(X \cdot Y)} \right\rvert\, Y \in[\underline{Y}, \bar{Y}]\right\} \text { under } P
$$

We have two perspectives on \hat{S}
(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_{1}, \ldots, p_{n}):

$$
\hat{S}=P \cdot\left(\frac{1}{n} \bigoplus_{i=1}^{n} p_{i}\right)
$$

Since $\hat{S}=\left\{\left.P \cdot\binom{\frac{1}{n} \sum_{i=1}^{n} y_{i}}{\frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot y_{i}} \right\rvert\, y \in[\underline{y}, \bar{y}]\right\}$
we could understand \hat{S} as a point-estimator, which estimates the linear image of the (set-valued) so called Aumann Expectation
$\left\{\left.\binom{\mathbb{E}(Y)}{\mathbb{E}(X \cdot Y)} \right\rvert\, Y \in[\underline{Y}, \bar{Y}]\right\}$ under P (often called the sharp identification region).

So \hat{S} could at first hand be seen as a (set-valued) pointestimator for a (set-valued) parameter (the Aumann Expectation under P). Here we can use random set theory to analyze the estimator.
(2) \hat{S} as the collection of all precise pointestimators obtained by all possible data-completions $y \in[\underline{y}, \bar{y}]$.

This two views induces (at least) two ideas to construct confidence regions:

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion.

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :
one suggestion often quoted as natural:

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :
one suggestion often quoted as natural: the Hausdorff Distance:

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :
one suggestion often quoted as natural: the Hausdorff Distance:

$$
H(A, B):=\max \{d H(A, B), d H(B, A)\}
$$

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :
one suggestion often quoted as natural: the Hausdorff Distance:

$$
H(A, B):=\max \{d H(A, B), d H(B, A)\}
$$

with the directed Hausdorff Distance

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :
one suggestion often quoted as natural: the Hausdorff Distance:

$$
H(A, B):=\max \{d H(A, B), d H(B, A)\}
$$

with the directed Hausdorff Distance

$$
d H(A, B):=\sup _{a \in A} \inf _{b \in B} d(a, b)
$$

This two views induces (at least) two ideas to construct confidence regions:
(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^{d} :
one suggestion often quoted as natural: the Hausdorff Distance:

$$
H(A, B):=\max \{d H(A, B), d H(B, A)\}
$$

with the directed Hausdorff Distance

$$
d H(A, B):=\sup _{a \in A} \inf _{b \in B} d(a, b)
$$

and a metric d in \mathbb{R}^{d} (e.g. the euclidean metric).
This approach is develepoed in Beresteanu, Molinari 2008:

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^{\star} and look on the distribution of $d H\left(\hat{S}^{\star}, \hat{S}\right)$.

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^{\star} and look on the distribution of $d H\left(\hat{S}^{\star}, \hat{S}\right)$. From this distribution they obtain a critical value c_{α} and construct the confidence collection

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^{\star} and look on the distribution of $d H\left(\hat{S}^{\star}, \hat{S}\right)$. From this distribution they obtain a critical value c_{α} and construct the confidence collection

$$
H C R=\bigcup_{\substack{s \subset \mathbb{R}^{d} \\ d H(S, \hat{S}) \leq c_{\alpha}}} S
$$

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^{\star} and look on the distribution of $d H\left(\hat{S}^{\star}, \hat{S}\right)$. From this distribution they obtain a critical value c_{α} and construct the confidence collection

$$
H C R=\bigcup_{\substack{s \in \mathbb{R}^{d} \\ d H(S, \hat{S}) \leq c_{\alpha}}} S
$$

This confidenceregion asymptotically covers the whole sharp identification region with probability at least $1-\alpha$

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^{\star} and look on the distribution of $d H\left(\hat{S}^{\star}, \hat{S}\right)$. From this distribution they obtain a critical value c_{α} and construct the confidence collection

$$
H C R=\bigcup_{\substack{s \subset \mathbb{R}^{\boldsymbol{d}} \\ d H(S, \hat{S}) \leq c_{\alpha}}} S
$$

This confidenceregion asymptotically covers the whole sharp identification region with probability at least $1-\alpha$ (under some regularity assumptions).

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^{\star} and look on the distribution of $d H\left(\hat{S}^{\star}, \hat{S}\right)$. From this distribution they obtain a critical value c_{α} and construct the confidence collection

$$
H C R=\bigcup_{\substack{s \subset \mathbb{R}^{d} \\ d H(S, \hat{S}) \leq c_{\alpha}}} S
$$

This confidenceregion asymptotically covers the whole sharp identification region with probability at least $1-\alpha$ (under some regularity assumptions).

If one is in the situation, that there is a precise parameter β behind the scenes, it would be sufficient, that a confidenceregion covers not necessarily the whole sharp identification region but only the true parameter β with at least probability $1-\alpha$, which is a weaker demand. So in this situation HCR is a (conservative) confidenceregion for the true parameter β.
(2) collect the classical confidence-elipsoides for the classical least-squares-estimator and all possible data $y \in[\underline{y}, \bar{y}]$:
(2) collect the classical confidence-elipsoides for the classical least-squares-estimator and all possible data $y \in[\underline{y}, \bar{y}]$:

$$
S C R:=\bigcup_{y \in[\underline{y}, \bar{y}]} C E(y)
$$

(2) collect the classical confidence-elipsoides for the classical least-squares-estimator and all possible data $y \in[\underline{y}, \bar{y}]$:

$$
S C R:=\bigcup_{y \in[y, \bar{y}]} C E(y)
$$

with the classical confidence-ellipsoides
(2) collect the classical confidence-elipsoides for the classical least-squares-estimator and all possible data $y \in[\underline{y}, \bar{y}]$:

$$
S C R:=\bigcup_{y \in[\underline{y}, \bar{y}]} C E(y)
$$

with the classical confidence-ellipsoides

$$
C E(y):=\left\{\beta \mid(\beta-\hat{\beta}(y))^{\prime}\left(X^{\prime} X\right)(\beta-\hat{\beta}(y)) \leq(p+1) \cdot \hat{\sigma}^{2}(y) \cdot F_{1-\alpha}(p+1, n-p+1)\right\} .
$$

But how do we compute this confidence region?

But how do we compute this confidence region?

Lemma

Let a partially identified linear model $y=\beta_{0}+\beta_{1} \cdot x+\varepsilon$ be given.

But how do we compute this confidence region?

Lemma

Let a partially identified linear model $y=\beta_{0}+\beta_{1} \cdot x+\varepsilon$ be given.
Under some not too strong conditions the simple confidenceregion SCR is a subset of the ellipsoid-type-confidenceregion

$$
E C R:=\operatorname{co}\left(\bigcup_{c \in\left\{x_{1}, \ldots, x_{n}\right\}} C E\left(y_{\geq c}^{u}\right) \cup C E\left(y_{\geq c}^{\prime}\right)\right)
$$

with arbitrary high probability $p<1$, if $n=n(p)$ is large enough.

One „real-world-example":

One „real-world-example": Allbus data:

One „real-world-example": Allbus data:

- sample from East Germany ($n=1077$)

One „real-world-example": Allbus data:

- sample from East Germany ($n=1077$)
- age (x, precise) and logarithm of income (y, interval-valued)

\square

Beresteanu, A., Molinari, F. (2008) Asymptotic Properties for a Class of Partially Identified Models, Econometrica, vol. 76, issue 4, pages 763-814.
围 Schön, S., Kutterer, H. (2004) Using Zonotopes for Overestimation-Free Interval Least-Squares - Some Geodetic Applications. Reliable Computing, vol. 11, pages 137-155.
國 Cerny, M., Rada M. (2011). On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data. Measurement Science Review, vol. 11 No. 2.
short simulationstudy:
short simulationstudy:
for 4 coarsening-processes:
short simulationstudy:
for 4 coarsening-processes:

- coarsening 1: $y=10 \cdot x+10+\varepsilon, \quad \varepsilon \sim N(0,1)$

$$
\underline{y}=y-\exp \left(\varepsilon_{2}\right), \quad \bar{y}=y+\exp \left(\varepsilon_{3}\right), \quad \varepsilon, \varepsilon_{2}, \varepsilon_{3}: i . i . d ., \sim N(0,1)
$$

short simulationstudy:
for 4 coarsening-processes:

- coarsening 1: $y=10 \cdot x+10+\varepsilon, \quad \varepsilon \sim N(0,1)$

$$
\underline{y}=y-\exp \left(\varepsilon_{2}\right), \quad \bar{y}=y+\exp \left(\varepsilon_{3}\right), \quad \varepsilon, \varepsilon_{2}, \varepsilon_{3}: i . i . d ., \sim N(0,1)
$$

- coarsening 2: $\quad \underline{y}=\min \left\{y, y_{2}\right\}, \quad \overline{\mathrm{y}}=\max \left\{y, y_{2}\right\}, \quad y_{2}=13 \cdot x+9+\varepsilon_{2}$
short simulationstudy:
for 4 coarsening-processes:
- coarsening 1: $y=10 \cdot x+10+\varepsilon, \quad \varepsilon \sim N(0,1)$

$$
\underline{y}=y-\exp \left(\varepsilon_{2}\right), \quad \bar{y}=y+\exp \left(\varepsilon_{3}\right), \quad \varepsilon, \varepsilon_{2}, \varepsilon_{3}: i . i . d ., \sim N(0,1)
$$

- coarsening 2: $\quad \underline{y}=\min \left\{y, y_{2}\right\}, \quad \bar{y}=\max \left\{y, y_{2}\right\}, \quad y_{2}=13 \cdot x+9+\varepsilon_{2}$
- coarsening 3: $\quad \underline{y}=y-\varepsilon_{2}^{2} \cdot 10^{-5}, \quad \bar{y}=y+\varepsilon_{3}^{2} \cdot 10^{-5} \cdot p, \quad p \sim B(n, 0.05)$
short simulationstudy:
for 4 coarsening-processes:
- coarsening 1: $y=10 \cdot x+10+\varepsilon, \quad \varepsilon \sim N(0,1)$

$$
\underline{y}=y-\exp \left(\varepsilon_{2}\right), \quad \bar{y}=y+\exp \left(\varepsilon_{3}\right), \quad \varepsilon, \varepsilon_{2}, \varepsilon_{3}: i . i . d ., \sim N(0,1)
$$

- coarsening 2: $\quad \underline{y}=\min \left\{y, y_{2}\right\}, \quad \bar{y}=\max \left\{y, y_{2}\right\}, \quad y_{2}=13 \cdot x+9+\varepsilon_{2}$
- coarsening 3: $\underline{y}=y-\varepsilon_{2}^{2} \cdot 10^{-5}, \quad \bar{y}=y+\varepsilon_{3}^{2} \cdot 10^{-5} \cdot p, \quad p \sim B(n, 0.05)$
- coarsening 4: $\quad \underline{y}=p \cdot y+(1-p) \cdot \min \{-200, y\}$

$$
\begin{array}{ll}
\overline{\mathrm{y}}=y+\varepsilon^{2} \cdot q & \\
p \sim B\left(n, u_{1}\right), & u_{1} \sim u[0,1] \\
q \sim B\left(n, u_{2}^{2}\right), & u_{2} \sim u[0,1]
\end{array}
$$

Covering Probabilities:

Covering Probabilities:

coarsening	N	SIR	HCR	ECR
1	10	0.96	1	1
1	100	1	1	1
1	1000	1	1	1
2	10	0.43	1	0.99
2	100	0.59	0.99	0.99
2	1000	0.80	1	1
3	10	0	0.93	1
3	100	0	0.92	0.95
3	1000	0	0.96	0.95
4	10	0.22	1	1
4	100	0.54	1	1
4	1000	0.82	1	1

Areas:

Areas:

coarsening	N	SIR	HCR	ECR
1	10	7.18	102.33	55.40
1	100	6.22	14.31	13.07
1	1000	6.14	8.62	8.08
2	10	5.33	25.81	22.90
2	100	5.60	8.79	8.67
2	1000	5.62	6.57	6.51
3	10	$7 \cdot 10^{-11}$	3.97	3.37
3	100	$6.29 \cdot 10^{-11}$	0.19	0.19
3	1000	$6.39 \cdot 10^{-11}$	0.02	0.02
4	10	9.90	15848.89	10485.69
4	100	1.22	142.84	87.30
4	1000	0.31	1.48	1.25

An Idea of robustification

1) a bad idea:
2) a bad idea:
apply a robust method to all pseudodata.

() linear models and partial identification

3) maybe a better idea:
4) maybe a better idea:
find for all pseudodata an appropriate (pseudo-)weightvector p.
5) maybe a better idea:
find for all pseudodata an appropriate (pseudo-)weightvector p.

- Calculate a global weight-vector g, that is acceptable in relation to all pseudoweightvectors

2) maybe a better idea:
find for all pseudodata an appropriate (pseudo-)weightvector p.

- Calculate a global weight-vector g, that is acceptable in relation to all pseudoweightvectors in the sense, that g lies between $\mathbb{1}$ and p for every pseudoweightvector p.

2) maybe a better idea:
find for all pseudodata an appropriate (pseudo-)weightvector p.

- Calculate a global weight-vector g, that is acceptable in relation to all pseudoweightvectors in the sense, that g lies between $\mathbb{1}$ and p for every pseudoweightvector p.
- Now use the weighted least-suqres-estimator with this weights.

2) maybe a better idea:
find for all pseudodata an appropriate (pseudo-)weightvector p.

- Calculate a global weight-vector g, that is acceptable in relation to all pseudoweightvectors in the sense, that g lies between $\mathbb{1}$ and p for every pseudoweightvector p.
- Now use the weighted least-suqres-estimator with this weights. All properties of the unweighted zonotope-estimator are kept.

2) maybe a better idea:
find for all pseudodata an appropriate (pseudo-)weightvector p.

- Calculate a global weight-vector g, that is acceptable in relation to all pseudoweightvectors in the sense, that g lies between $\mathbb{1}$ and p for every pseudoweightvector p.
- Now use the weighted least-suqres-estimator with this weights. All properties of the unweighted zonotope-estimator are kept.
- For confidenceregions use the Hausdorff-based approach of Beresteanu and Molinari, but maybe with another d in the definition of the Hausdorff-distance.

() linear models and partial identification

() linear models and partial identification

Covering Probabilities:

Covering Probabilities:

coarsening	N	SIR	HCR	ECR	GRHCR
1	10	0.96	1	1	1
1	100	1	1	1	1
1	1000	1	1	1	1
2	10	0.43	1	0.99	1
2	100	0.59	0.99	0.99	1
2	1000	0.80	1	1	1
3	10	0	0.93	1	1
3	100	0	0.92	0.95	0.95
3	1000	0	0.96	0.95	0.96
4	10	0.22	1	1	
4	100	0.54	1	1	1
4	1000	0.82	1	1	1

Areas:

Areas:

coarsening	N	SIR	HCR	ECR	GRHCR
1	10	7.18	119.55	32.522	120.38
1	100	6.22	14.31	13.07	13.59
1	1000	6.14	8.62	8.08	7.90
2	10	5.33	25.81	22.90	24.57
2	100	5.60	8.79	8.67	8.56
2	1000	5.62	6.57	6.51	6.24
3	10	$7 \cdot 10^{-11}$	3.97	3.37	3.99
3	100	$6.29 \cdot 10^{-11}$	0.19	0.19	0.2
3	1000	$6.39 \cdot 10^{-11}$	0.02	0.02	0.02
4	10	9.90	15848.89	10485.69	15994.15
4	100	1.22	142.84	87.30	110.02
4	1000	0.31	1.48	1.25	

Beresteanu, A., Molinari, F. (2008) Asymptotic Properties for a Class of Partially Identified Models, Econometrica, vol. 76, issue 4, pages 763-814.
围 Schön, S., Kutterer, H. (2004) Using Zonotopes for Overestimation-Free Interval Least-Squares - Some Geodetic Applications. Reliable Computing, vol. 11, pages 137-155.
國 Cerny, M., Rada M. (2011). On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data. Measurement Science Review, vol. 11 No. 2.

