
Linear models and partial identification:
Imprecise linear regression with interval data
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The Problem

We have to estimate the parameter β ∈ Rp+1

of a linear model

Y ∗ = Xβ + ε

with a fixed design-matrix

X =


1 X11 X12 . . . X1p

1 X21 X22 . . . X2p
...

1 Xn1 Xn2 . . . Xnp

 ,

a multivariat normal i.i.d. error ε and a dependend n dimensional random variable
Y ∗ = (Y ∗1 , . . . ,Y

∗
n ), that is only known to lie in the intervall [Y,Y] of the known

random variables Y and Y.
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A basic paradigm for solving the problem

One simple approach:

look at all possible candidates Y for the unknown Y ∗ compatible with the
restriction Y ∈ [Y,Y] and estimate for all such candidates Y the corresponding
estimates β̂ to get the set-valued estimator

Ŝ := {β̂(y)|y ∈ [y, y]}

where y and y are n -dimensional samples from Y and Y and y is a n-dimensional
vector satisfiying

yi ∈ [Yi , Yi ], i = 1, . . . , n,

which stands for a possible sample of Y compatible with the interval-valued
observed data.
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Ŝ := {β̂(y)|y ∈ [y, y]}

where y and y are n -dimensional samples from Y and Y and y is a n-dimensional
vector satisfiying

yi ∈ [Yi , Yi ], i = 1, . . . , n,

which stands for a possible sample of Y compatible with the interval-valued
observed data.

() linear models and partial identification 3 / 48



A basic paradigm for solving the problem

One simple approach:
look at all possible candidates Y for the unknown Y ∗ compatible with the
restriction Y ∈ [Y,Y] and estimate for all such candidates Y the corresponding
estimates β̂ to get the set-valued estimator
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One possibility:

Choose the classical linear estimator

β̂(y) = (X ′X )−1X ′y .

to get an estimate β̂(y) for all y .
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Linear Regression with one covariate:

β̂(y) =

(
β0

β1

)

=

(
1 x̄
x̄ x2

)−1(
ȳ

x · y

)

=

(
1 x̄
x̄ x2

)−1


1
n

n∑
i=1

yi

1
n

n∑
i=1

xi · yi



=: P ·


1
n

n∑
i=1

yi

1
n

n∑
i=1

xi · yi
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Definition
The Minkowski Sum of two sets A,B in Rd is defined as:

A⊕ B := {a + b|a ∈ A, b ∈ B}.

The Minkowski Mean of n pointsets A1, . . . ,An is defined as:

1
n

n⊕
i=1

Ai :=

{
1
n

n∑
i=1

ai

∣∣∣∣∣ ai ∈ Ai , i = 1, . . . , n

}
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Example
The Minkowski Sum of two line segments in R2:

0 1 2 3 4

−
2

−
1

0
1

2
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The calculation of β̂(y) for all y ∈ [y, y] is nothing else than the computation of
the linear image of the 2 dimensional minkowski mean of the n line segments pi

formed by the points (y
i
, xi · yi

) and (yi , xi · yi ) under the mapping induced by the
matrix P:

Ŝ = P ·
(

1
n

n⊕
i=1

pi

)
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The set-valued estimate Ŝ has the following properties:

a) it is (, as the linear image of a convex, bounded set) convex and bounded.

0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

β0

β 1
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The set-valued estimate Ŝ has the following properties:

a) it has finite many extremepoints.
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The set-valued estimate Ŝ has the following properties:

b) it is central symmetric with the center β̂(
y+ y

2 ).
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The set-valued estimate Ŝ has the following properties:

c) its facets are central symmetric, too.
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The set-valued estimate Ŝ has the following properties:

c) in geometry it is, as the Minkowski Sum of n line segments, called a zonotope.
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Another way to look at the estimate Ŝ (or a zonotope in general):

Ŝ = {A · y |y ∈ [y, y]}

is the linear image of a n-dimensional cuboid or equivalently the affine linear
image of the n-dimensional unit-cube:

1
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One can show:

a) The inverse images y of the extremepoints of Ŝ are extremepoints of the
cuboid [y, y] and have the following structure:

y = yu
≥c =

yi if xi ≥ c

y
i
else

(1)

or

y = y l
≥c =

y
i
if xi ≥ c

yi else ,
(2)

for some c ∈ R. Here we call these y pseudodata.
It suffices to take only c = xi , i = 1, . . . , n.
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b) all pseudodata are mapped to the boundary of Ŝ .

c) if there are no ties in x, then all pseudodata are actually mapped to
extremepoints of Ŝ .

=⇒ it suffices to look at all pseudodata instead of the whole cuboid to observe Ŝ:

Ŝ = co {A · y |y is a pseudodata }
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We have two perspectives on Ŝ

(1) Ŝ as the linear image of the minkowski mean of line segments, which could be
also seen as the linear image of the minkowski mean of the set-valued data
point (p1, . . . , pn):

Ŝ = P ·

(
1
n

n⊕
i=1

pi

)

Since Ŝ =

P ·


1
n

n∑
i=1

yi

1
n

n∑
i=1

xi · yi


∣∣∣∣∣∣∣∣ y ∈ [y, y]


we could understand Ŝ as a point-estimator, which estimates the linear image
of the (set-valued) so called Aumann Expectation{(

E(Y )

E(X · Y )

)∣∣∣∣∣Y ∈ [Y,Y]

}
under P (often called the sharp identification

region).
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So Ŝ could at first hand be seen as a (set-valued) pointestimator for a
(set-valued) parameter (the Aumann Expectation under P). Here we can use
random set theory to analyze the estimator.
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(2) Ŝ as the collection of all precise pointestimators obtained by all possible
data-completions y ∈ [y, y].
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This two views induces (at least) two ideas to construct confidence regions:

(1) analyze or estimate the distribution of the pointestimator Ŝ to construct a
confidenceregion. Since Ŝ is set-valued, we need a propper metric for the
space of sets in Rd :
one suggestion often quoted as natural: the Hausdorff Distance:

H(A,B) := max{dH(A,B), dH(B,A)}

with the directed Hausdorff Distance

dH(A,B) := sup
a∈A

inf
b∈B

d(a, b)

and a metric d in Rd (e.g. the euclidean metric).

This approach is develepoed in Beresteanu, Molinari 2008:
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There the authors estimate Ŝ and draw bootstrap-samples from the data to
estimate further Ŝ? and look on the distribution of dH(Ŝ?, Ŝ).

From this
distribution they obtain a critical value cα and construct the confidence collection

HCR =
⋃

S⊂Rd

dH(S,Ŝ)≤cα

S .

This confidenceregion asymptotically covers the whole sharp identification region
with probability at least 1− α (under some regularity assumptions).

If one is in the situation, that there is a precise parameter β behind the scenes, it
would be sufficient, that a confidenceregion covers not necessarily the whole sharp
identification region but only the true parameter β with at least probability 1− α,
which is a weaker demand. So in this situation HCR is a (conservative)
confidenceregion for the true parameter β.
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estimate further Ŝ? and look on the distribution of dH(Ŝ?, Ŝ). From this
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(2) collect the classical confidence-elipsoides for the classical
least-squares-estimator and all possible data y ∈ [y, y]:

SCR :=
⋃

y∈[y,y]

CE (y)

with the classical confidence-ellipsoides

CE(y) := {β| (β − β̂(y))′(X ′X )(β − β̂(y)) ≤ (p + 1) · σ̂2(y) · F1−α(p + 1, n − p + 1)
}
.
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But how do we compute this confidence region?

Lemma
Let a partially identified linear model y = β0 + β1 · x + ε be given.
Under some not too strong conditions the simple confidenceregion SCR is a
subset of the ellipsoid-type-confidenceregion

ECR := co

 ⋃
c∈{x1,...,xn}

CE (yu
≥c) ∪ CE (y l

≥c)


with arbitrary high probability p < 1, if n = n(p) is large enough.
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One „real-world-example“:

Allbus data:

• sample from East Germany (n = 1077)

• age (x , precise) and logarithm of income (y , interval-valued)
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short simulationstudy:

for 4 coarsening-processes:

• coarsening 1: y = 10 · x + 10 + ε, ε ∼ N(0, 1)

y = y − exp(ε2), y = y + exp(ε3), ε, ε2, ε3 : i .i .d .,∼ N(0, 1),

• coarsening 2: y = min{y , y2}, y = max{y , y2}, y2 = 13 · x + 9 + ε2

• coarsening 3: y = y − ε22 · 10−5, y = y + ε23 · 10−5 · p, p ∼ B(n, 0.05)

• coarsening 4: y = p · y + (1− p) ·min{−200, y}
y = y + ε2 · q
p ∼ B(n, u1), u1 ∼ u[0, 1]

q ∼ B(n, u2
2), u2 ∼ u[0, 1]
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Covering Probabilities:

coarsening N SIR HCR ECR

1 10 0.96 1 1
1 100 1 1 1
1 1000 1 1 1
2 10 0.43 1 0.99
2 100 0.59 0.99 0.99
2 1000 0.80 1 1
3 10 0 0.93 1
3 100 0 0.92 0.95
3 1000 0 0.96 0.95
4 10 0.22 1 1
4 100 0.54 1 1
4 1000 0.82 1 1
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Areas:

coarsening N SIR HCR ECR

1 10 7.18 102.33 55.40
1 100 6.22 14.31 13.07
1 1000 6.14 8.62 8.08
2 10 5.33 25.81 22.90
2 100 5.60 8.79 8.67
2 1000 5.62 6.57 6.51
3 10 7 ·10−11 3.97 3.37
3 100 6.29 ·10−11 0.19 0.19
3 1000 6.39 ·10−11 0.02 0.02
4 10 9.90 15848.89 10485.69
4 100 1.22 142.84 87.30
4 1000 0.31 1.48 1.25
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An Idea of robustification
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1) a bad idea:

apply a robust method to all pseudodata.
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2) maybe a better idea:

find for all pseudodata an appropriate (pseudo-)weightvector p.
• Calculate a global weight-vector g , that is acceptable in relation to all

pseudoweightvectors in the sense, that g lies between 1 and p for every
pseudoweightvector p.

• Now use the weighted least-suqres-estimator with this weights.
All properties of the unweighted zonotope-estimator are kept.

• For confidenceregions use the Hausdorff-based approach of Beresteanu and
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Covering Probabilities:

coarsening N SIR HCR ECR GRHCR

1 10 0.96 1 1 1
1 100 1 1 1 1
1 1000 1 1 1 1
2 10 0.43 1 0.99 1
2 100 0.59 0.99 0.99 1
2 1000 0.80 1 1 1
3 10 0 0.93 1 1
3 100 0 0.92 0.95 0.95
3 1000 0 0.96 0.95 0.96
4 10 0.22 1 1
4 100 0.54 1 1 1
4 1000 0.82 1 1 1
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Areas:

coarsening N SIR HCR ECR GRHCR

1 10 7.18 119.55 32.522 120.38
1 100 6.22 14.31 13.07 13.59
1 1000 6.14 8.62 8.08 7.90
2 10 5.33 25.81 22.90 24.57
2 100 5.60 8.79 8.67 8.56
2 1000 5.62 6.57 6.51 6.24
3 10 7 ·10−11 3.97 3.37 3.99
3 100 6.29 ·10−11 0.19 0.19 0.2
3 1000 6.39 ·10−11 0.02 0.02 0.02
4 10 9.90 15848.89 10485.69 15994.15
4 100 1.22 142.84 87.30 110.02
4 1000 0.31 1.48 1.25
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