
Evaluation and comparison of set-valued
estimators:

empirical and structural aspects

Evaluation and comparison of imprecise methods and models



Evaluation vs Properties

Evaluation

in an empirical sense:
is able to solve the problem at hand:
ideally has to make true and (fully)
informative statements/predictions:
has to be nearly as useful as truth.

Properties
in a structural sense:
has to have a similar structure like
truth.
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Evaluation

Trueness
„nearly“ true:

• true only with a certain probability

• true in a fuzzy sense

informativeness: Statements/predictions have to be non-tautological.
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How to formalize?

different approaches:

• fixed informativeness: find estimator with fixed informativeness and
best trueness compared to other estimators with the same
informativeness (e.g. maximal informativeness =⇒ point-estimator).

• fixed trueness (e.g. covering probability): find estimator with fixed
covering-probability and best informativeness compared to other
estimators with the same covering probability.

• „mixtures“ of the first and the second approach?
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Often there is no best estimator, only undominated estimators
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second approach:

how to measure informativeness?
example: simple linear regression:
a (set-valued) estimate (e.g. a confidence ellipse) s1 is more informative
than another estimate s2 if s1 ⊆ s2.
or accordingly an estimator S1 is more informative than S2 if
S1(x) ⊆ S2(x) for all data x. Often: s1 * s2 and s2 * s1.
Which estimate is more informative?
maybe no one, but in practice we are forced to choose one estimator.
one possible (naive) answer: the estimate with the lowest area (if this
exists) or the estimator with the lower expected area (independent from
the true parameter) respectively.
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Problem with the area

• no good interpretation (especially with more than one covariate)

• not invariant under nonlinear transformations of the covariates
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Another way of measuring the informativeness:

look on the usefulness of the estimator: especially the predictive accuracy.

• first problem: loss-function

• second problem: for which covariates the prediction is evaluated?
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• also not invariant under nonlinear transformations of the

dependend variable (this is entailed in the choice of the loss
function)

• strange example:
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Structural Properties

idea: an estimator, as an „approximation of the truth“ should have a
„similar structure like the truth“. simple example:location estimator
(point-estimator):
e : Rn :−→ R , or as a predictor:
e : Rn −→ Rn.
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The mean, as an estimator of the expectation of a random
variable.

properties of the mean, as well as the expectation:

a) linear: e(a · x + y) = a · e(x) + e(y)

a’) especially: affine equivariant: e(a · x + b) = a · e(x) + b

b) monotone: x ≤ y =⇒ e(x) ≤ e(y)
easy to compute image of Intervals:
I = {y | y ≤ y ≤ y} =⇒ e[I ] = {z |e(y) ≤ z ≤ e(y)}

c) idempotent: e(e(x)) = e(x)

d) anti-extensive: e(x) ≥ x =⇒ e(x) = x

d’) anti-intensive: e(x) ≤ x =⇒ e(x) = x
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c) idempotence:

e(e(X )) = X

a’) affine equivariant: e(a · X + b) = a · e(X ) + b

b) (elementwise) monotone:
x ≤ y =⇒ e({x}) ≤ e({y}) & e({x}) ≤ e({y})

e) set-monotone: X ⊆ Y =⇒ e(X ) ⊆ e(Y )

for all x ∈ X it follows:

{x} ⊆
⋃
x∈X

{x} = X

=⇒ e({x}) ⊆ e(X )

=⇒
⋃
x∈X

e({x}) ⊆ e(X ).

f) compositional:
⋃

x∈X
e({x}) = e(X )
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Why the need to satisfy structural properties?

not so clear.

• computations and constructions are often easier:
for example from an interval-valued, point-domained monotone
location-estimator we can easily construct an interval-domained
(interval-valued) location-estimator:
X = [x, x] =⇒ e(X ) = [e(x), e(x)].
not so easy to generalize for example a classical confidence-interval
CI = [µ̂− c · σ̂, µ̂+ c · σ̂].

• it is easier to carry out simulation studies
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• as-if-coherence:

„estimator should behave, as if it says the truth“.
=⇒ it is maybe not so problematic to deduce propositions from
different estimates and ignore the fact, that the estimates are only
estimates.
Beispiel?
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set-monotonicity

If we infer sets of possible parameters from sets of possible data, from an
information-theoretic point of view, the following should be intuitively
true:
if we have more information about the data (i.e. more precise data, e.g.
X ⊆ Y ), than we should estimate a more informative set of parameters
(e(X ) ⊆ e(Y )).
What would happen, if this is not the case?
if we know, that the true date x lies in X and X ⊆ Y , it follows x ∈ Y
and we could „deduce“, that the true parameter lies in e(Y ), so if
e(X ) * e(Y ) we could sharpen the estimate e(X ) to
e∗(X ) := e(X ) ∩ e(Y ).
all in all we could construct e∗ : 2D −→ 2P : X 7→

⋂
Y⊇X

e(X ), which is

set-monotone and more informative than e.
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compositionality

if e is monotone, but not compositional, one could get, with a similar
reasoning, the sharper estimator

e∗∗ : 2D −→ 2P : X 7→
⋃

x∈X
e({x}).
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Definition
let C be a class of estimators

(e.g. all estimators e : 2D −→ 2P with a
coveringprobability not lower than 1− α).
An estimator e ∈ C is called undominated on K ⊆ 2D with respect to the
class C ,if for all other e∗ ∈ C\{e} there exists a set X ∈ K with
e∗(X ) * e(X ). in words: e is undominated on K, if there exists no other
estimator in C, that is equally better than e (on K).

Lemma
Let e : 2D −→ 2P be a compositional estimator.If e is undominated on
the set of all one-point-sets

(D
1

)
= {{x}|x ∈ D}with respect to a class C

of set-monotone estimators, then e is also undominated on 2D .
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Proof.
Let e∗ be equally better than e (on 2D).

∃X ∈ 2D : e∗(X ) ( e(X )

∃p ∈ e(X )\e∗(X )

∃x ∈ X : p ∈ e({x})

from e∗({x}) ⊆ e∗(X ) it follows

p /∈ e∗({x})

e ∗ ({x}) ( e({x})

=⇒ e could not be undominated on
(D

1

)
.
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Another nice implication of set-monotonicity:

Applicability to fuzzy-set-estimation:
A fuzzy set defined by its membership-function
µA : D −→ [0, 1]
or equivalently by its α-cut-representation:
α-cut:
Aα := {d ∈ D|µA(d) ≥ α}.
α-cut-representation:
A′ : [0, 1] −→ 2D : α 7→ Aα

this allows definition of fuzzy-estimator in terms of the α-cut
representation:
e′(A) : [0, 1] −→ 2P : α 7→ e(Aα).
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Observation: all α-cuts of a fuzzy set are building a chain with respect to
the set-inclusion

Aα1 ⊆ Aα2 or Aα1 ⊇ Aα2 .
So if the estimator is not set-monotone, the constructed fuzzy set e′(X )

is in general no well defined fuzzy set.
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