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Background

There are many multivariate generalizations of the notion of

quantiles

For most generalizations a geometrical understanding of Rd is

underlying

Thus, especially a�ne equivariance is an important issue

However, there are some situations, where a purely order-theoretic

understanding of the underlying space is also reasonable (and a

geometrical understanding is only partially reasonable)
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Order-theoretic data analysis

Examples where an order theoretic data-analysis could be useful are:

multivariate poverty-measurement

analysis of commonalities and di�erences among voting pro�les in

social choice theory

measurement of 'extremeness' of opinions (later)

analysis of distribution-function-valued data (e.g., distribution of age

in di�erent households)

idempotent descriptive analysis of Rasch-type data

generally: statistical analysis of formal concepts in formal concept

analysis (FCA, introduced by Wille in 1984)
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Posets and Complete Lattices

A complete lattice L = (L,≤) is a partially ordered set (i.e., a set L with

a re�exive, transitive and antisymmetric relation ≤) for which every

arbitrary subset S ⊆ L has

a least upper bound (called supremum, denoted by
∨

S)

and a greatest lower bound (called in�mum, denoted by
∧

S).
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Probability measures on complete lattices

De�nition

Let (L,F ,m) be a probability space where L is a complete lattice. For a

given x ∈ L the set

↓ x := {y ∈ L | y ≤ x}

is called principal ideal generated by x . Assume that all principal ideals

are measurable. Then with

Bm : F −→ R : x 7→ m(↓ x)

we denote the corresponding belief function.

(If not all principal ideals are measurable we can take Bm(x) = m∗(↓ x),

where m∗ is the inner measure associated to m.)
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Usual de�nition of quantiles in (R,≤)

Let (R,B(R),m) be a probability space. Then every x ∈ R with

Bm(x) = m(↓ x) ≥ α and

m(↑ x) ≥ 1− α

is called an α-quantile.
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Asymmetric De�nition of (lower) quantiles in (R,B(R),m)

Let (R,B(R),m) be a probability space. Then every x ∈ R which is a

minimal element in the set

Qx := {x ′ ∈ R | m(↓ x ′)︸ ︷︷ ︸
=Bm(x)

≥ m(↓ x)︸ ︷︷ ︸
=Bm(x)=:α

}

is called a lower quantile of level α = Bm(x) = m(↓ x).
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Properties of lower quantiles in (R,B(R),m)

1 For every α ∈ Im(Bm) there exists exactly one lower quantile of level

α, denoted by qα.

2 For every α, α′ ∈ Im(Bm) we have

α ≤ α′ =⇒ qα ≤ qα′

and in particular, di�erent quantiles are always comparable.
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Asymmetric de�nition of (lower) quantiles in (L,F ,m)

Let (L,F ,m) be a probability space where L is a complete lattice (and

all principal ideals are measurable). Then every x ∈ L which is a minimal

element in the set Qx = {x ′ ∈ L | Bm(x ′) ≥ Bm(x)} is called a lower

quantile of level α = Bm(x) = m(↓ x).
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Quantile system for a probability measure

De�nition

Let (L,F ,m,Bm) be given. De�ne the system

Q =
{∧

Qx | x ∈ L
}

as the system of lower (pre-)quantiles associated to (L,F ,m,Bm).
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Construction of a qualitative and a quantitative map

De�nition

De�ne the map Φ as

Φ : L −→ L : x 7→
∧
{q ∈ Q | q ≥ x}.

The mapping Φ can be understood as a qualitative measure of location.

(Φ is a so-called closure operator.)
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Construction of a qualitative and a quantitative map

De�nition

De�ne the level function λ as

λ : L −→ R : x 7→ Bm(Φ(x)).

This mapping could be understood as a quantitative measure of location.

Because (in regular cases) λ satis�es

∀x ∈ L, α ∈ [0, 1] : λ(x) ≤ α ⇐⇒ x ≤ maxλ−1(↓ α)︸ ︷︷ ︸
∈L

the location measure λ has a qualitative representation in L.
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Example

Let L := be the complete lattice of all compact convex sets in Rd

ordered by set inclusion ⊆. Then∧
M =̂

⋂
M ;

∨
M =̂ co

(⋃
M
)
.

If we treat Rd -valued random variables as one-point set-valued variables

in L then we get essentially Tukey's half-space depth:

level function λ =̂ (a transformation of) Tukeys outlyingness function

Q =̂ depth contours
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{x}

Φ({x})
λ({x}) = Bm(Φ({x}))

b

depth-contours
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Example: Analysis of di�erent attitudes w.r.t. di�erent

principles of justice

Allbus 2014: 8 Questions about 4 di�erent principles of justice (c.f.,

Liebig, S., May, M., (2009): Dimensionen sozialer Gerechtigkeit)

1 merit principle ('Leistungsprinzip')

2 principle of equality ('Gleichheitsprinzip')

3 right principle ('Anrechtsprinzip')

4 demand principle ('Bedarfsprinzip')

e.g.,: statement S1: 'It is fair when those, who perform well at work, earn

more than others' (transl. G.S.)

agreement measured on a scale from 1: 'full agreement' to 5: 'full

disagreement',

simpli�ed here to 2 binary variables: agreement (yes/no), disagreement

(yes/no)
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person i
agreement 1 2 … n

S1 fair:  better performance, higher merit x x

S2 fair: get only what one has achieved through own efforts x x

S3 fair:  equal living conditions x x

S4 fair:  equally distributed income

S5 fair: advantages due to origin

S6 fair:  social superiors have better living conditions

S7 fair:  take care of the weak x x x

S8 fair:  support carers x x

disagreement

S1 fair:  better performance, higher merit

S2 fair: get only what one has achieved through own efforts

S3 fair:  equal living conditions

S4 fair:  equally distributed income x x x

S5 fair: advantages due to origin x

S6 fair:  social superiors have better living conditions x x

S7 fair:  take care of the weak

S8 fair:  support carers

merit 
principle

principle of 
equality

right 
principle

demand 
principle

merit 
principle

principle of 
equality

right 
principle

demand 
principle
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De�nition of ≤

For a person p de�ne the corresponding vector x ∈ L := {0, 1}16 with

xi = 1 ⇐⇒ person p has a cross in column i and thus agrees (disagrees)

to the corresponding statement.

De�ne the relation ≤ as

p ≤ q ⇐⇒ ∀i ∈ {1, . . . , 16} : pi ≤ qi .

Thus person p is lower than or equal to person q if person q has at least

a cross in every row in which person p has a cross:
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Quantiles
"mean 
opinion"

"median 
opinion"

agreement 0,3 % 0,49 % 0,85 % 1,76 % 13,3 % 49,45% 77% 91,85%

S1 fair:  better performance, higher merit x x x x x x x

S2
fair: get only what one has achieved 
through own efforts x x x x x

S3 fair:  equal living conditions x x x

S4 fair:  equally distributed income x x

S5 fair: advantages due to origin

S6
fair:  social superiors have better living 
conditions x x

S7 fair:  take care of the weak x x x x x x x x

S8 fair:  support carers x x x x x x x x

disagreement

S1 fair:  better performance, higher merit x

S2
fair: get only what one has achieved 
through own efforts

S3 fair:  equal living conditions x  x

S4 fair:  equally distributed income x x x x

S5 fair: advantages due to origin x x x x x x

S6
fair:  social superiors have better living 
conditions x x x x

S7 fair:  take care of the weak

S8 fair:  support carers

right 
principle

demand 
principle

merit 
principle

principle of 
equality

right 
principle

demand 
principle

merit 
principle

principle of 
equality
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The higher the quantile, the more diverse is the subpopulation that

lies below this quantile and is described by this quantile.

For a given opinion pro�le x ∈ L we have: The higher the smallest

quantile Φ(x) that is still above x the more disperse is the most

speci�c subpopulation that contains x and is summarized by this

quantile Φ(x).

Thus higher Φ(x) or higher values of λ(x) = Bm(Φ(x)) indicate a

'more outlying' opinion x .

Thus we have some method of 'measuring' the outlyingness of

opinions.
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'Proof of concept'

There is an (small, but statistically signi�cant) association between

the level λ and for example the political self evaluation of people on

a left-right scale

For this example, the approach could also be understood as some

ordinal approach for measuring a latent concept (here:

extremeness/outlyingness of opinions)

The proposed approach has the advantage of being insensitive to

adding redundant items (this would not be the case e.g., for a

Rasch-type modeling that assumes locally stochastic independent

items)
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And �nally:

There are many other situations where ordinal data analysis with the

introduced concepts are useful:

multivariate poverty-measurement

analysis of commonalities and di�erences among voting pro�les in

social choice theory

analysis of distribution-function-valued data (e.g., distribution of age

in di�erent households)

idempotent descriptive analysis of Rasch-type data

generally: statistical analysis of formal concepts in formal concept

analysis (FCA, introduced by Rudolf Wille in 1984)
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