Quantile constructions for complete lattices

With an example of measuring extremeness/outlyingness of opinions

Georg Schollmeyer

Department of Statistics, LMU Munich

Georg Schollmeyer Department of Statistics, LMU Munich

- There are many multivariate generalizations of the notion of quantiles
- For most generalizations a geometrical understanding of ℝ^d is underlying
- Thus, especially affine equivariance is an important issue
- However, there are some situations, where a purely order-theoretic understanding of the underlying space is also reasonable (and a geometrical understanding is only partially reasonable)

Examples where an order theoretic data-analysis could be useful are:

- multivariate poverty-measurement
- analysis of commonalities and differences among voting profiles in social choice theory
- measurement of 'extremeness' of opinions (later)
- analysis of distribution-function-valued data (e.g., distribution of age in different households)
- idempotent descriptive analysis of Rasch-type data
- generally: statistical analysis of formal concepts in formal concept analysis (FCA, introduced by Wille in 1984)

A complete lattice $\mathbb{L} = (L, \leq)$ is a **partially** ordered set (i.e., a set *L* with a reflexive, transitive and antisymmetric relation \leq) for which every arbitrary subset $S \subseteq L$ has

- a least upper bound (called supremum, denoted by $\bigvee S$)
- and a greatest lower bound (called infimum, denoted by $\bigwedge S$).

Let (L, F, m) be a probability space where L is a complete lattice. For a given $x \in L$ the set

$$\downarrow x := \{y \in \mathbb{L} \mid y \le x\}$$

is called principal ideal generated by x. Assume that all principal ideals are measurable. Then with

$$B_m: \mathcal{F} \longrightarrow \mathbb{R}: x \mapsto m(\downarrow x)$$

we denote the corresponding belief function. (If not all principal ideals are measurable we can take $B_m(x) = m_*(\downarrow x)$, where m_* is the inner measure associated to m_*)

Usual definition of quantiles in (\mathbb{R}, \leq)

Let $(\mathbb{R},\mathcal{B}(\mathbb{R}),m)$ be a probability space. Then every $x\in\mathbb{R}$ with

$$egin{aligned} B_m(x) &= m(\downarrow x) \geq lpha & ext{ and} \ m(\uparrow x) \geq 1-lpha \end{aligned}$$

is called an α -quantile.

Asymmetric Definition of (lower) quantiles in $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$

Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ be a probability space. Then every $x \in \mathbb{R}$ which is a minimal element in the set

$$Q_{x} := \{x' \in \mathbb{R} \mid \underbrace{m(\downarrow x')}_{=B_{m}(x)} \geq \underbrace{m(\downarrow x)}_{=B_{m}(x)=:\alpha}\}$$

is called a **lower quantile** of level $\alpha = B_m(x) = m(\downarrow x)$.

- For every α ∈ Im(B_m) there exists exactly one lower quantile of level α, denoted by q_α.
- **2** For every $\alpha, \alpha' \in Im(B_m)$ we have

$$\alpha \leq \alpha' \Longrightarrow \boldsymbol{q}_{\alpha} \leq \boldsymbol{q}_{\alpha'}$$

and in particular, different quantiles are always comparable.

Asymmetric definition of (lower) quantiles in $(\mathbb{L}, \mathcal{F}, m)$

Let $(\mathbb{L}, \mathcal{F}, m)$ be a probability space where \mathbb{L} is a complete lattice (and all principal ideals are measurable). Then every $x \in \mathbb{L}$ which is a minimal element in the set $Q_x = \{x' \in \mathbb{L} \mid B_m(x') \ge B_m(x)\}$ is called a **lower quantile** of level $\alpha = B_m(x) = m(\downarrow x)$.

Let $(\mathbb{L}, \mathcal{F}, m, B_m)$ be given. Define the system

$$\mathfrak{Q} = \left\{ \bigwedge Q_x \mid x \in \mathbb{L} \right\}$$

as the system of lower (pre-)quantiles associated to $(\mathbb{L}, \mathcal{F}, m, B_m)$.

Define the map Φ as

$$\Phi: \mathbb{L} \longrightarrow \mathbb{L}: x \mapsto \bigwedge \{q \in \mathfrak{Q} \mid q \ge x\}.$$

The mapping Φ can be understood as a qualitative measure of location. (Φ is a so-called closure operator.)

Define the level function λ as

$$\lambda : \mathbb{L} \longrightarrow \mathbb{R} : x \mapsto B_m(\Phi(x)).$$

This mapping could be understood as a quantitative measure of location. Because (in regular cases) λ satisfies

$$\forall x \in \mathbb{L}, \alpha \in [0,1] : \lambda(x) \le \alpha \iff x \le \underbrace{\max \lambda^{-1}(\downarrow \alpha)}_{\in \mathbb{L}}$$

the location measure λ has a qualitative representation in \mathbb{L} .

Example

Let $\mathbb{L} :=$ be the complete lattice of all compact convex sets in \mathbb{R}^d ordered by set inclusion \subseteq . Then

$$\bigwedge M \cong \bigcap M$$
; $\bigvee M \cong \overline{\operatorname{co}} \left(\bigcup M \right).$

If we treat \mathbb{R}^d -valued random variables as one-point set-valued variables in \mathbb{L} then we get essentially Tukey's half-space depth:

level function $\lambda_{-} \, \widehat{=} \,$ (a transformation of) Tukeys outlyingness function

Example: Analysis of different attitudes w.r.t. different principles of justice

- Allbus 2014: 8 Questions about 4 different principles of justice (c.f., Liebig, S., May, M., (2009): Dimensionen sozialer Gerechtigkeit)
 - Image: merit principle ('Leistungsprinzip')
 - Principle of equality ('Gleichheitsprinzip')
 - ight principle ('Anrechtsprinzip')
 - demand principle ('Bedarfsprinzip')
- e.g.,: statement S1: 'It is fair when those, who perform well at work, earn more than others' (transl. G.S.)
- agreement measured on a scale from 1: 'full agreement' to 5: 'full disagreement',
- simplified here to 2 binary variables: agreement (yes/no), disagreement (yes/no)

			person i			
	agree	ment	1	2		n
merit	S1	fair: better performance, higher merit	x	x		
principle	S2	fair: get only what one has achieved through own efforts		x		x
	r					
principle of	S3	fair: equal living conditions	x	x		
equality	S4	fair: equally distributed income				
-	I.				1	1
right	S5	55 fair: advantages due to origin				
principle	S6	fair: social superiors have better living conditions				
	r					
demand	S7	fair: take care of the weak	x	x		×
principle	S8	fair: support carers	x	×		
	disagr	eement				
merit	S1	fair: better performance, higher merit				
principle	S2	fair: get only what one has achieved through own efforts				
	1					
principle of	S3	fair: equal living conditions				
equality	S4	fair: equally distributed income	x	x		x

right	S5	fair: advantages due to origin	x	
principle	S6	fair: social superiors have better living conditions	x	x

demand	S 7	fair: take care of the weak		
principle	60	fair, support corors		
	20	Tall. Support callers		

For a person p define the corresponding vector $x \in \mathbb{L} := \{0,1\}^{16}$ with $x_i = 1 \iff$ person p has a cross in column i and thus agrees (disagrees) to the corresponding statement.

Define the relation \leq as

$$p \leq q \iff \forall i \in \{1,\ldots,16\} : p_i \leq q_i.$$

Thus person p is lower than or equal to person q if person q has at least a cross in every row in which person p has a cross:

			Quantiles				"mean opinion"	"median opinion"		
	agre	ement	0,3 %	0,49 %	0,85 %	1,76 %	13,3 %	49,45%	77%	91,85%
merit principle	S1 S2	fair: better performance, higher merit fair: get only what one has achieved through own efforts		x	×	×	×	×	x	x
							1			
principle of	\$3	fair: equal living conditions						×	×	x
equality	S4	fair: equally distributed income							×	x
right	S5	fair: advantages due to origin								
principle	S6	conditions							×	×
	T			1			1	n n		
demand	S7	fair: take care of the weak	×	x	x	x	x	×	x	x
principle	S 8	fair: support carers	x	x	x	x	×	×	x	x
-	disa	greement								
merit	S1	fair: better performance, higher merit								×
principle	S2	fair: get only what one has achieved through own efforts								
·							-	n – n		
principle of	S3	fair: equal living conditions								×
equality	S4	fair: equally distributed income]			×	×	× /	x

right principle	\$5	fair: advantages due to origin fair: social superiors have better living		x	x	×	×	× _	. –	x
	S6	conditions				×	×	×		x
demand	S7	fair: take care of the weak								
principle	S8	fair: support carers								

- The higher the quantile, the more diverse is the subpopulation that lies below this quantile and is described by this quantile.
- For a given opinion profile x ∈ L we have: The higher the smallest quantile Φ(x) that is still above x the more disperse is the most specific subpopulation that contains x and is summarized by this quantile Φ(x).
- Thus higher Φ(x) or higher values of λ(x) = B_m(Φ(x)) indicate a 'more outlying' opinion x.
- Thus we have some method of 'measuring' the outlyingness of opinions.

- There is an (small, but statistically significant) association between the level λ and for example the political self evaluation of people on a left-right scale
- For this example, the approach could also be understood as some ordinal approach for measuring a latent concept (here: extremeness/outlyingness of opinions)
- The proposed approach has the advantage of being insensitive to adding redundant items (this would not be the case e.g., for a Rasch-type modeling that assumes locally stochastic independent items)

- There are many other situations where ordinal data analysis with the introduced concepts are useful:
 - multivariate poverty-measurement
 - analysis of commonalities and differences among voting profiles in social choice theory
 - analysis of distribution-function-valued data (e.g., distribution of age in different households)
 - idempotent descriptive analysis of Rasch-type data
 - generally: statistical analysis of formal concepts in **formal concept analysis** (FCA, introduced by Rudolf Wille in 1984)

Stefan Liebig and Meike May.

Dimensionen sozialer Gerechtigkeit.

Aus Politik und Zeitgeschichte, 59(47), 2009.

GESIS - Leibniz - Institut fur Sozialwissenschaften.

Allbus compact (2015): Allgemeine Bevölkerungsumfrage der Sozialwissenschaften.

GESIS Datenarchiv, Köln. ZA5241 Datenfile Version 1.1.0,.

Bernhard Ganter and Rudolf Wille.

Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag, 2013.

John W Tukey.

Mathematics and the picturing of data.

In Proceedings of the international congress of mathematicians, volume 2, pages 523-531, 1975.