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Abstract

We investigate risk attitudes when the underlying domain of payoffs
is finite and the payoffs are, in general, not numerical. In such cases,
the traditional notions of absolute risk attitudes, that are designed for
convex domains of numerical payoffs, are not applicable. We introduce
comparative notions of weak and strong risk attitudes that remain
applicable. We examine how they are characterized within the rank-
dependent utility model, thus including expected utility as a special
case. In particular, we characterize strong comparative risk aversion
under rank-dependent utility. This is our main result. From this and
other findings, we draw two novel conclusions. First, under expected
utility, weak and strong comparative risk aversion are characterized by
the same condition over finite domains. By contrast, such is not the
case under non-expected utility. Second, under expected utility, weak
(respectively: strong) comparative risk aversion is characterized by the
same condition when the utility functions have finite range and when
they have convex range (alternatively, when the payoffs are numerical
and their domain is finite or convex, respectively). By contrast, such is
not the case under non-expected utility. Thus, considering comparative
risk aversion over finite domains leads to a better understanding of the
divide between expected and non-expected utility, more generally, the
structural properties of the main models of decision-making under risk.
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1 Introduction

The traditional risk attitude concepts of economics are defined with reference
to the more primitive notion of an increase in risk. The most widespread
notion of an increase in risk is that of a mean-preserving spread (Rothschild
and Stiglitz, 1970). This notion is usually introduced assuming that the un-
derlying domain of payoffs is a convex subset of the reals, as is the case when
the payoffs form a monetary interval, for instance. The resulting ideas of risk
aversion, risk seeking, and risk neutrality have led to numerous applications
in insurance theory, finance, and other areas of economics (e.g., Eeckhoudt et
al., 2005). These model-free ideas can also be used to axiomatically analyze
the structural properties of the main models of decision-making under risk.
Specifically, they help better understand the fundamental divide between
expected and non-expected utility. This is because risk attitudes turn out
to be treated differently across this divide. In particular, one can define var-
ious logically nested kinds of increase in risk, accordingly, various degrees of
risk aversion (or risk seeking), and subsequently prove that under expected
utility, all degrees of risk aversion (or risk seeking) are characterized by the
same condition, while such is not the case under non-expected utility (see
esp. Chateauneuf et al., 1997).

However, many risky decisions are made with respect to finite domains
of non-numerical payoffs.1 Economically relevant examples include non-
divisible consumer goods, health conditions, or social positions, for instance.
As the mean of an option then becomes a meaningless notion, it is not ob-
vious how to define an increase in risk in those cases. Consequently, it is
not obvious how to define risk attitudes. A coarse notion of increasing risk
seems readily available, however. It is that (under suitable restrictions) any
risky prospect is riskier than any riskless prospect, i.e., any payoff given with
certainty. One can retrospectively interpret Yaari as building on that notion
of increasing risk in his pioneering exploration (Yaari, 1969) of a compara-
tive approach to risk aversion. In this approach, rather than the absolute
notion “being risk averse”, the central concept of interest becomes the more
fundamental comparative notion “being more risk averse than”. Importantly,
comparative notions do not apply only when the domain of payoffs is fi-
nite and non-numerical, but also over convex real domains (e.g., Diamond
and Stiglitz, 1974). However, in the former case, unlike in the latter, they
turn out to be the only useful risk attitude notions available. The literature
has now explored notions of increasing risk that are more refined than the
coarse notion given above. The most important references are Allison and

1In a direction that is different from but complementary to the one explored here, one
could also maintain the numerical structure of the domain of payoffs but generalize risk to
uncertainty to investigate how to define an increase in uncertainty. See in particular Grant
and Quiggin, 2005 and the references quoted therein. We are grateful to a referee for draw-
ing our attention to Grant and Quiggin’s paper, to which we briefly return in fn. 4 and 14.
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Foster, 2004, Mendelson, 1987, and Bommier et al., 2012, with motivations
coming from health economics, general statistics, and insurance economics,
respectively. While only the first of these papers focuses on the finite case,
the remaining two nonetheless also provide analytical tools that are applica-
ble to that case. All three papers propose to define increasing risk by a simple
single-crossing condition on the distribution functions associated to the op-
tions (see our Def. 1). Surprisingly, these three important contributions are
independent of one another and—the last one excepted—Yaari’s preexisting
pioneering work. Overall, the current literature on risk attitudes over finite
domains is not conceptually unified or systematically organized. Arguably it
should, like the classic literature on absolute risk attitudes (e.g., Chateauneuf
et al., 1997), be structured with reference to logically nested kinds of increas-
ing risk.

Gathering insights from the above papers, we contribute to conceptually
unifying the currently available notions of comparative risk attitudes over
finite domains (see Secs. 3 and 4). In particular, building especially on Bom-
mier et al., 2012 on the one hand and the classic literature on absolute risk
attitudes on the other, we propose to distinguish between weak and strong
comparative risk aversion (see Def. 2). We then investigate (in Sec. 5) the
characterization of these notions in a large class of non-expected utility pref-
erences, viz. the rank-dependent utility preferences (Quiggin, 1982). Such
preferences include both expected utility and the so-called dual expected
utility model (Yaari, 1987) as special cases. To the best of our knowl-
edge, when applied to finite domains of payoffs, our notion of strong com-
parative risk aversion has not been hitherto characterized under expected
utility, dual expected utility, or general rank-dependent utility. Building
on Chateauneuf et al., 2005, we provide the missing characterizations (see
Thm. 1, together with Cors. 1 and 2). Those are the main results in our pa-
per. As regards our notion of weak comparative risk aversion, it has already
been characterized under expected utility (Peters and Wakker, 1987), but
not under dual expected utility or rank-dependent utility, to the best of our
knowledge. We provide partial, yet instructive results on weak comparative
risk aversion under dual expected utility (the non-necessity result in Obs. 2)
and general rank-dependent utility (the sufficiency result in Obs. 3).

Furthermore, bringing together these new results and preexisting ones,
we reach two novel conclusions (Facts 2 and 3). First, under expected util-
ity, weak and strong comparative risk aversion are characterized by the same
condition, which is not the case under non-expected utility. This conclusion
holds not only when the utility functions have convex range, which was
already known (e.g., Chateauneuf et al., 1997), but also when the utility
functions have finite range, which had not been hitherto established. Second
and more novel, under expected utility, weak (respectively: strong) compar-
ative risk aversion is characterized by the same condition when the utility
functions have finite range and when they have convex range (alternatively,
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when the payoffs are numerical and their domain is finite or convex, respec-
tively). By contrast, such is not the case under non-expected utility. The
latter kind of comparisons had not been hitherto studied in the literature,
to the best of our knowledge. Accordingly, it is worth making immediately
clear that it does not reduce to the former. Weak and strong comparative
risk aversion could be characterized by the same condition both in the fi-
nite and in the convex case, yet the common condition differ across these
two cases. Conversely, weak and strong comparative risk aversion could be
characterized by different conditions both in the finite and in the convex
case, yet the distinctive condition for each attitude remain the same across
these two cases. The take-home message from our conclusions on these two
distinct issues is that like absolute risk attitudes, comparative risk attitudes
help better understand the fundamental divide between expected and non-
expected utility, more generally, the structural properties of the main models
of decision-making under risk. We consider this general conceptual insight,
which we explain to raise several interesting questions for further research,
to be the main contribution of our investigation of risk attitudes over finite
domains.

The rest of the paper is organized as follows. Sec. 2 gathers some neces-
sary preliminaries. Sec. 3 presents the notion of increasing risk on which our
analysis relies. Sec. 4 introduces our notions of weak and strong compara-
tive aversion. Sec. 5 contains our main results and their discussion. Sec. 6
concludes.

2 Preliminaries

Let X = {x1, . . . , xn} be a finite set of payoffs. These payoffs may, but need
not, be numerical, i.e., elements of R; for our purposes, what matters is that
there be, in any case, finitely many of them. Let L = ∆(X), with generic
element l = (p1, x1; . . . ; pn, xn), be the set of all probability distributions, or
lotteries, over X. Let the preferences of the decision-maker be given by <,
a binary relation over L, with symmetric and asymmetric parts ∼ and �,
respectively. We always assume that < is a weak order. Abusing notation as
usual, < is also defined over X, identified with the set of degenerate lotteries
in L. Notice that, by the above assumptions, the restriction of < to X can be
represented by a utility function u : X → R, the range of which is finite. That
representation is ordinally unique. For non-triviality, we assume throughout
that there are at least three payoffs between which the decision-maker is
not indifferent, i.e., x � y � z holds for some x, y, z ∈ X. Furthermore,
we always assume that the elements of X have been indexed consistently
with their ranks in the decision-maker’s preferences, i.e., x1 < · · · < xn holds.
Thus, given l = (p1, x1; . . . ; pn, xn) and any i, 1 ≤ i ≤ n,

∑i
j=1 pj is the

probability that lottery l delivers a payoff x at least as good as xi, i.e., that
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x < xi.
In this paper, we focus on three models of decision-making under risk.

Rank-dependent utility (RDU; Quiggin, 1982) holds if the following condition
obtains. There exists a strictly increasing, continuous2 probability weighting
function w : [0, 1]→ [0, 1], with w(0) = 0 and w(1) = 1, and a utility function
u : X → R, such that, with the convention u(xn+1) = 0, < is represented by
the function v : L→ R given by:

v(l) =
n∑
i=1

w
 i∑
j=1

pj

(u(xi)− u(xi+1)
) . (1)

In this representation, the utility function is cardinally unique and the prob-
ability weighting function is absolutely unique. Expected utility (EU) is the
special case of (1) where, for all p ∈ [0, 1], w(p) = p. When the elements of X
are numerical, dual expected utility (DEU; Yaari, 1987) is the special case
of (1) where, for all x ∈ X, u(x) = x. Any model of decision-making under
risk different from EU qualifies as a non-expected utility (non-EU) model.

For future reference, we also state now the definition of one core property
satisfied by RDU and many other models of decision-making under risk. The
relation < respects first-order stochastic dominance if for any l, l′ ∈ L, with
l = (p1, x1; . . . ; pn, xn), l′ = (q1, x1; . . . ; qn, xn), if

∑i
j=1 pj ≥

∑i
j=1 qj holds

for all i, 1 ≤ i ≤ n, and the inequality is strict for some i, then l < l′. Thus,
if the cumulative distribution function of l is nowhere higher, and somewhere
strictly lower, than the cumulative distribution function of l′, then l < l′.

Finally, we recall the characterization of concavity, which we here adopt
as a definition, whereby a function f : R→ R is concave (respectively: con-
vex ) if for any a, b, c, d ∈ R such that a > b ≥ c > d, the inequality(
f(c)− f(d)

)
/
(
c− d

)
≥
(
f(a)− f(b)

)
/
(
a− b

)
(respectively: the inequality(

f(a)−f(b)
)
/
(
a−b

)
≥
(
f(c)−f(d)

)
/
(
c−d

)
) holds. The function f is strictly

concave (respectively: convex) if this inequality is always strict. Furthermore,
given two functions f and g that are real-valued (but not necessarily defined
over real domains), we say that f is more concave (respectively: more con-
vex ) than g if there exists a strictly increasing concave (respectively: convex)
function h : R→ R such that f = h ◦ g. The function f is strictly more con-
cave (respectively: convex) than g if this transformation h is strictly concave
(respectively: convex).

2The literature has been more general in exploring discontinuities at 0 and 1. Motiva-
tions have included accounting for the possibility effect, the certainty effect, and the like
(e.g., Wakker, 2010, Chap. 6). For simplicity, we will assume these discontinuities away.
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3 Increasing Risk

The most fundamental definition in our paper is the following. As stated, it
is (a slight variation on)3 the definition proposed in Bommier et al., 2012.

Definition 1. Let l = (p1, x1; . . . ; pn, xn) and l′ = (q1, x1; . . . ; qn, xn) be two
elements of L. Say that l is a spread of l′, noted here l ` l′, if there exists a k,
2 ≤ k ≤ n, such that for all i ≤ k− 1,

∑i
j=1 pj ≥

∑i
j=1 qj, and for all i ≥ k,∑i

j=1 pj ≤
∑i

j=1 qj, with at least one strict inequality in each direction.

Thus, l ` l′ if the cumulative distribution functions of l and l′ single-cross,
i.e., l is first-order-stochastically dominated by l′ on the left of the crossing
point, then first-order-stochastically dominates it on the right of the cross-
ing point. Therefore, appreciating all payoffs with reference to that point, l
makes the bad payoffs of l′ worse, the good payoffs, better.4 The same funda-
mental intuition underlies the simplest kind of increase in risk in the classic
convex real case (Diamond and Stiglitz, 1974; Machina, 1982; Machina and
Pratt, 1997). A major difference is that the spread can then be calibrated
as, e.g., mean-preserving, which is in general not possible in the finite case,
where the mean of a lottery is, in general (specifically, when the payoffs are
not numerical), a meaningless notion. This non-calibration notwithstanding,
one can say that whenever l ` l′, l is riskier than l′.

It is natural to single out the special case where l ` l′ and l′ is a degenerate
lottery, i.e., a riskless payoff. This is when the above conditions hold with∑i

j=1 qj = 0 for all i ≤ k − 1 and
∑i

j=1 qj = 1 for all i ≥ k. Assuming the
respect of first-order stochastic dominance, this is equivalent to the definition
of increasing risk which—as a matter of retrospective attribution—one can
naturally associate to the seminal exploration of risk attitudes in Yaari, 1969.
We call such spreads basic. They are, from a logical point of view, the most
restrictive kinds of increase in risk which one can define over finite domains.

Thus, ` is a binary relation over L and, as such, some of its basic prop-
erties may be noted. First and most obvious, ` is an incomplete relation
over L; i.e., for arbitrary l, l′ ∈ L , it may be that neither l ` l′ nor l′ ` l
holds. Second, ` respects so-called von Neumann-Morgensten independence;
i.e. with the usual notation for convex combinations of lotteries, for any
l, l′, l′′ ∈ L and α ∈ (0, 1], l ` l′ if and only if αl+ (1−α)l′′ ` αl′+ (1−α)l′′.

3The variation consists in the final addition “with at least one strict inequality in each
direction.” This permits avoiding to say, e.g., that a lottery is riskier than its worst payoff.
Given the comparative context in which we study spreads, the variation is stylistic only.

4Transposed to lotteries to render the two definitions comparable, Grant and Quiggin’s
(2005, Def. 1) notion of increasing uncertainty is a particular case of our notion of increas-
ing risk. Grant and Quiggin’s notion then requires that the inter-quantile differences in-
crease (in absolute value) away from the crossing point. Our notion does not require that
inter-quantile differences be defined or, even when they are, that they be so constrained.
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Finally, ` is not necessarily transitive.5 Nevertheless, when desired, transi-
tive sub-relations of ` may be defined as follows (see Bommier et al., 2012,
p. 1627-1628). Given r ∈ (0, 1), say that l is a r-spread of l′, noted here
l `r l′, if there exists a k, 2 ≤ k ≤ n, such that for all i ≤ k − 1, r ≥∑i

j=1 pj ≥
∑i

j=1 qj , and for all i ≥ k, r ≤
∑i

j=1 pj ≤
∑i

j=1 qj . Notice that,
given two lotteries l and l′ defined over finitely many payoffs, l `r l′ and
l `r′ l′ may simultaneously hold for distinct r, r′ ∈ (0, 1).6 However, whether
uniqueness holds or not, each `r relation is transitive.

An example of the just introduced r-spread relations is with r = 1/2,
which corresponds to the special case of a median-preserving spread (Al-
lison and Foster, 2004; Lasso de la Vega, 2018). Given other values of r,
other quantile-preserving spreads can be similarly defined (Mendelson, 1987;
without this terminology but with a similar idea, Bommier et al., 2012). By
definition, if l is a basic spread of l′, then it is a r-spread of l′ for a given
(range of) r ∈ (0, 1), which implies that it is a spread of l′, while none of
the converse implications holds. This delineates a map of various degrees
of increase in risk over finite domains. This map could be enriched—but to
a limited extent only, especially since following the present approach, the
associated cumulative distribution functions must single-cross.7

4 Risk Aversion

Relative to the notions of increasing risk introduced in the previous section,
concepts of absolute risk attitude could certainly be defined. However, these
concepts would prove uninteresting, inasmuch as they would clash with core
properties of decision-making under risk.8 Accordingly, what one should ex-
amine instead is the more flexible and more primitive notion of a comparative
risk attitude. To that end, consider decision-makers 1 and 2, endowed with
binary preference relations <1 and <2, respectively, over L. More specifi-

5For illustration, take X = {a, b, c, d, e}. Assume that the set is ordered alphabetically.
Consider the lotteries l = (2/5, a; 0, b; 2/5, c; 0, d; 1/5, e), l′ = (1/5, a; 0, b; 0, c; 4/5, d; 0, e),
and l′′ = (0, a; 3/5, b; 0, c; 2/5, d; 0, e). Then l is a spread of l′ and l′ is a spread of l′′, but l is
not a spread of l′′ because the cumulative distribution functions of l and l′′ multiple-cross.

6Take the alphabetically ordered set X = {a, b, c} and consider the lotteries
l = (1/3, a; 1/3, b; 1/3, c) and l′ = (1/4, a; 1/2, b; 1/4, c). Then, l `r l′ for all r ∈ [1/3, 2/3].

7While this seems to prevent one from generalizing the notion of a spread, in the other
direction, some special kinds of r-spread may very well be defined. Consider, for example,
the variance order (Trojani and Malamud, 2009). In effect, it is defined with reference to
1/2-spreads, with the added restriction that, for any function u : X → R representing the
restriction of < to X, the variance of u is greater in the riskier lottery than in the less
risky one. (Surprisingly perhaps, some such comparisons are indeed ordinally robust.)

8For instance, given some r ∈ (0, 1), say that < is averse to all r-spreads if for any
l, l′ ∈ L, if l `r l′, then l′ < l. Assuming mixture-continuity (a standard property satisfied
by RDU and many other models), one can show that this attitude clashes with the strict
respect of first-order stochastic dominance. Similar conclusions obtain varying the kind
of spread under consideration, or replacing risk aversion by risk seeking or risk neutrality.
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cally, assume throughout that <1 and <2 coincide over X, i.e., they differ
over non-degenerate lotteries only. When it will be necessary to repeat this
assumption, to be discussed shortly, we will refer to it as the assumption that
<1 and <2 are ordinally equivalent. Notice that under the ordinal equiva-
lence assumption, there is no need to index spread relations by either <1

or <2. This is because the notion of first-order stochastic dominance, hence
the notion of single-crossing, are entirely ordinal notions; i.e., they are robust
to any strictly increasing transformation of the underlying utility function
on the set of payoffs. Equipped with this observation, consider the follow-
ing definitions. For greater generality, they are given with reference not to
r-spreads, for some r ∈ (0, 1), but to any spread.9

Definition 2. Let <1 and <2 be two ordinally equivalent decision-makers.
Say that <1 is strongly more risk averse (respectively: seeking) than <2,
noted here 1 SMRA 2 (respectively: 1 SMRS 2), if for all l, l′ ∈ L such that
l ` l′, if l <1 l

′, then l <2 l
′ (respectively: if l′ <1 l, then l′ <2 l). Say

that <1 is weakly more risk averse (respectively: seeking) than <2, noted
here 1 WMRA 2 (respectively: 1 WMRS 2), if the previous implication holds
under the additional condition that l′ is degenerate, i.e., the spread is basic.

Thus, generally speaking, 1 is more risk averse (respectively: seeking) than 2
if there is no increase (respectively: decrease) in risk which 1 would accept
but 2 refuse.10 The “weak” or “strong” qualification then applies depend-
ing on the restrictiveness of the kind of spread considered. For brevity, we
henceforth focus on comparative risk aversion only; i.e., we forego expliciting
the parallel statements pertaining to comparative risk seeking.

Notice that by definition, 1 SMRA 2 implies 1 WMRA 2, but the converse
does not hold in general. This is a simple, but important fact to which we
will return in the next section. We record it in the following statement.

Fact 1. Necessarily, if 1 SMRA 2, then 1 WMRA 2. The converse does not
necessarily hold.

To the best of our knowledge, there is, in the current literature, no estab-
lished terminology to describe various degrees of comparative risk aversion.
The terminology which we propose is natural in light of the implication just
highlighted. It is also aligned with the terminology already established to
describe the various degrees of absolute risk aversion over classic convex real
domains (see, e.g., Chateauneuf et al., 1997). Finally, speaking of “weak”
and “strong” comparative risk aversion to describe the specific attitudes pre-
viously defined is justified by the observations made in Sec. 3. To wit, basic

9From now on, the notion of r-spread, by contrast with the more general notion of a
spread, will not play any role in our paper. Our results will show that, under RDU at least,
focusing on a specific r-spread is not relevant for analyzing comparative risk attitudes.

10Hence Yaari’s “acceptance set” terminology (Yaari, 1969, for instance on p. 316).
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spreads seem to be the most restrictive, and spreads, the most inclusive,
degrees of increase in risk which one could define over finite domains.

We close this section by briefly discussing the ordinal equivalence as-
sumption. This assumption is typically considered necessary to meaningfully
compare risk attitudes across individuals (e.g., Kihlstrom and Mirman, 1974,
p. 366; Bommier et al., 2012, p. 1620).11 This assessment could be qualified,
however. First, we observe that, in some cases, the addition of this assump-
tion can be spared. Assume that, restricted to X, <2 is known to be a strict
order. If 1 WMRA 2 holds, it then follows that <1 is also strict, furthermore
that it coincides with <2, over X. Thus, in particular, if <1 and <2 are
comparable in terms of risk attitudes and strict over X, they are ordinally
equivalent. Second and more important, we observe that the ordinal equiv-
alence assumption could be naturally generalized as follows. Say that <1

and <2 are permutation-ordinally equivalent if they are identical over X up
to some permutation on X. The permutation ordinal equivalence condition
fails when <1 and <2 do not have the same number of indifference classes
over X. When the condition obtains, however, the previous notions of com-
parative risk aversion can apply, provided they are generalized as explained
next. Let σ21 : X → X be any permutation such that the permutation or-
dinal equivalence condition holds.12 Furthermore, abusing notation, for any
l ∈ L, let σ21(l) denote the lottery induced by applying the permutation σ21
to the payoffs of l. Finally, let l `<i l′ denote the fact that l is a spread of
l′ with respect to <i, with i = 1, 2. Then, notice that l `<1 l′ holds if and
only if σ21(l) `<2 σ21(l′) holds, with the crossing point being the same in both
cases. Accordingly, we would find it natural to say, for example, that 1 is
strongly more risk averse than 2 if for all l, l′ ∈ L such that l `<1 l′, if l <1 l

′,
then σ21(l) <2 σ

2
1(l′). This illustrates the fact that risk attitude comparisons

are not, in principle, bound by the ordinal equivalence assumption.

5 Characterizations

We now turn to the comparison of two RDU decision-makers, <1 and <2,
characterized by the pairs of functions (u1, w1) and (u2, w2), respectively.
To this end, we introduce the following two inter-individual indices. In the
second index, owing to the ordinal equivalence assumption, we forego defin-
ing the domain over which the supremum is taken with specific reference to
either <1 or <2, and we write < instead.13

11Absent special assumptions, it does not follow from 1 WMRA 2 that 1 and 2 are ordi-
nally equivalent. Indeed, 1 WMRA 2 can hold with, for instance, <2 the constant relation
such that x ∼2 y for all x, y ∈ X and <1 any non-constant preference relation over X.

12When indifference between payoffs is allowed, the permutation is not uniquely defined.
13Further notice the use, in this index, of the assumption that there are at least three

non-indifferent payoffs. Without this assumption, w in (1) is not behaviorally identified
anyhow (e.g., Gilboa, 1987, p. 71).
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I1,2w = inf
{p,q,r,s∈[0,1]|p>q≥r>s}

w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(s)

. (2)

I1,2u = sup
{a,b,c,d∈X|a�b<c�d}

u1(a)−u1(b)
u2(a)−u2(b)
u1(c)−u1(d)
u2(c)−u2(d)

. (3)

To interpret these indices, observe first that, by the definition of RDU, there
must exist a strictly increasing function g1 : R→ R such that w1 = g1 ◦ w2.
Likewise, by the additional assumption that <1 and <2 are ordinally equiv-
alent, there must exist a strictly increasing function h1 : R→ R such that
u1 = h1 ◦ u2. Therefore, using these increasing transformations g1 and h1,
one could also introduce I1,2w and I1,2u as follows.

I1,2w = inf
{p,q,r,s∈[0,1]|p>q≥r>s}

g1(w2(p))−g1(w2(q))
w2(p)−w2(q)

g1(w2(r))−g1(w2(s))
w2(r)−w2(s)

. (2’)

I1,2u = sup
{a,b,c,d∈X|a�b<c�d}

h1(u2(a))−h1(u2(b))
u2(a)−u2(b)

h1(u2(c))−h1(u2(d))
u2(c)−u2(d)

. (3’)

These variants make the following facts apparent. The minimand in (2)
is a discrete and multiplicative analogue of a second derivative value for w1 as
a function of (the range of) w2. Therefore, I

1,2
w is an index of non-convexity

of w1 as a function of w2. The lower the value of the index, the less convex
the function. Similarly, the maximand in (3) is a discrete and multiplicative
analogue of a second derivative value for u1 as a function of (the range of) u2.
Thus, I1,2u is an index of non-concavity of u1 as a function of u2. The higher
the value of the index, the less concave the function. Notice that u1 is more
concave than u2 if and only if I1,2u ≤ 1. Furthermore, it can be shown that
w1 is more convex than w2 if and only if I1,2w = 1. This is because one can
show that I1,2w ≤ 1 always holds. This can be derived either from the fact
that the range of the weighting functions is convex, or from the fact that
their domain is convex (while by contrast, with a finite domain of payoffs,
neither the domain nor the range of the utility functions is convex). We
record the resulting equivalences in the following observation.

Observation 1. 1) u1 is more concave than u2 if and only if I1,2u ≤ 1.
2) w1 is more convex than w2 if and only if I1,2w = 1.

Proof. See Appendix.
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The two inter-individual indices I1,2w and I1,2u are inspired by, and can be
compared to, the two intra-individual indices introduced in Chateauneuf et
al., 2005 to characterize so-called “monotone risk aversion”. This is a specific
degree of absolute risk aversion which one can define when the domain of
payoffs is a convex subset of the reals. Instrumental in Chateauneuf et al.’s
characterization of that attitude are the following indices Pw and Gu, called
by them indices of “pessimism” and “greediness”, respectively.

Pw = inf
{p∈(0,1)}

1−w(p)
1−p
w(p)
p

. (4)

Gu = sup
{a,b,c,d∈X|a>b≥c>d}

u(a)−u(b)
a−b

u(c)−u(d)
c−d

. (5)

As can be seen by re-interpreting the domain of u1 as the range of u2, there
is no fundamental difference between I1,2u and Gu. By contrast, even after
a similar transposition has been made, a relevant difference between I1,2w
and Pw remains. To wit, define the following index of “relative pessimism”.

P 1,2
w = inf

{p∈(0,1)}

1−w1(p)
1−w2(p)

w1(p)
w2(p)

. (6)

As comparing (2) and (6) makes clear, P 1,2
w corresponds to the particular case

of I1,2w where the minimand is taken assuming p = 1, q = r, and s = 0 while
I1,2w ranges, more generally, over any p, q, r, s ∈ [0, 1] such that p > q ≥ r > s.
Accordingly, given functions w1 and w2, I

1,2
w ≤ P 1,2

w obviously always holds,
while I1,2w < P 1,2

w demonstrably holds in some cases. We will later return
to this observation to illustrate the fact that the condition P 1,2

w ≥ I1,2u —
which would be the direct comparative transposition of Chateauneuf et al.’s
characterization—would not be strong enough to characterize SMRA under
RDU (see esp. Obs. 3 and Ex. 3).14 The above differences notwithstanding,
like Pw andGu in Chateauneuf et al., 2005, I1,2w and I1,2u can be interpreted as
indices of pessimism and greediness, respectively—only, as inter-individual,
relative ones.

We can now state our main result.
14 By contrast, in their characterization of their notion of comparative uncertainty

aversion under Choquet Expected Utility, Grant and Quiggin (2005, Prop. 5) can use
a comparative transposition of Chateauneuf et al.’s characterization. Before a referee
draw our attention to Grant and Quiggin’s paper, we were unaware that the conditions in
Chateauneuf et al., 2005 had already been put to use to investigate general notions of com-
parative risk or uncertainty aversion. Grant and Quiggin’s precedence notwithstanding,
our main result cannot be obtained as a corollary of theirs (see Obs. 3 and Ex. 3).
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Theorem 1. Let <1 and <2 be two ordinally equivalent RDU decision-
makers, characterized by the pairs of functions (u1, w1) and (u2, w2), re-
spectively. Then, 1 SMRA 2 if and only if I1,2w ≥ I1,2u .

Proof. See Appendix.

Next, notice that if w1 = w2 (respectively: u1 = u2), then I1,2w = 1
(respectively: I1,2u = 1). Besides, recall that I1,2u ≤ 1 if and only if u1 is more
concave than u2, that I

1,2
w ≤ 1 always holds, and that I1,2w = 1 if and only if

w1 is more convex than w2. Thus, Thm. 1 has as immediate corollaries the
following two results. Inasmuch as they pertain to finite domains, they are
also new, to the best of our knowledge.

Corollary 1. Let <1 and <2 be two ordinally equivalent EU decision-ma-
kers, characterized by the functions u1 and u2, respectively. Then, 1 SMRA 2
if and only if u1 is more concave than u2.

Corollary 2. Assuming that the elements of X are real numbers, let <1

and <2 be two DEU decision-makers, characterized by the functions w1

and w2, respectively. Alternatively, with general X, let <1 and <2 be two
RDU decision-makers, characterized by the pairs of functions (u1, w1) and
(u2, w2), respectively, with u1 = u2 (up to some affine transformation).
Then, 1 SMRA 2 if and only if w1 is more convex than w2.

It is worth examining what becomes of the above characterizations in
the convex case, thereby meaning either that (i) the payoffs are numerical,
their domain is convex, and the utility functions are strictly increasing over
that domain; or that (ii) the range of the utility functions is convex. While
neither sense of convexity implies the other, either suffices to derive the
following corollary. The corollary holds because on either sense of convexity,
I1,2u ≥ 1 always holds (which is like in Chateauneuf et al., 2005, e.g. p. 658,
and following the same reasoning as the one explained with respect to I1,2w
in the proof of Obs. 1). It then follows that, in the convex case, u1 is more
concave than u2 if and only if I1,2u = 1.

Corollary 3. Let <1 and <2 be two ordinally equivalent RDU decision-
makers, characterized by the pairs of functions (u1, w1) and (u2, w2), respec-
tively. Furthermore, let either the range of u1 and u2 be convex, or the payoffs
be numerical, their domain be convex, and the utility functions u1 and u2 be
strictly increasing over that domain. Then, 1 SMRA 2 if and only if u1 is
more concave than u2 and w1 is more convex than w2.

Corr. 3 also implies that, in the convex case, the characterizations of SMRA
under EU and DEU remain the same as the ones given in Corrs. 1 and 2, re-
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spectively.15 On the assumption that the utility functions have convex range,
more specifically, the three preceding results can also be obtained as corollar-
ies of the classic characterizations of the absolute concept of “strong risk aver-
sion” (i.e., aversion to all mean-preserving spreads; see, e.g., Chateauneuf et
al., 1997).16 See, for EU, Rothschild and Stiglitz, 1970; for DEU, Yaari, 1987,
Thm. 2; for RDU (under various technical restrictions), Chew et al. 1987,
Thm. 1, Ebert, 2004, Thm. 4, and Schmidt and Zank, 2008, Thm. 1.

Thus, under either EU or DEU, SMRA is characterized by the same con-
dition in the finite and the convex case. However, interestingly, the same con-
clusion does not hold under general RDU. Now, under RDU, for 1 SMRA 2
to hold, it is necessary in the finite case, like it is in the convex case, that
u1 be more concave than u2. Indeed, I1,2w ≤ 1 always holds and I1,2u ≤ 1
if and only if u1 is more concave than u2, so that I1,2w ≥ I1,2u together with
non-concavity would lead to a contradiction. But in the finite case, unlike in
the convex case, w1 need not be more convex than w2 for 1 SMRA 2 to hold.
Indeed, when X is finite, it can even be under RDU that 1 SMRA 2 and w1 is
strictly more concave than w2. This is established by the following example.

Example 1. Let X = {1, 4/9, 1/9}. For all x ∈ X, let u2(x) = x and
u1(x) =

√
x. For all p ∈ [0, 1], let w2(p) = p and w1(p) = 9/8p − 1/8p2, as

illustrated graphically in Figure 1.17
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Figure 1: w1(p) = 9
8p−

1
8p

2, strictly more concave than w2(p) = p

15For alternative proofs of these characterization results under EU and DEU, see Bom-
mier et al., 2012, Results 3.1 and 3.2, respectively. The fact that Bommier et al.’s results
pertain to the convex case follows from how they model the larger intertemporal de-
cision problem in which they embed their characterization exercises (see esp. p. 1617).
These modelling assumptions also explain why their Result 3.2 is a theorem about DEU.

16The corollaries hold because the fact stated next follows from Thm. 1 in Machina
and Pratt, 1997 (perfecting Thm. 1 in Rothschild and Stiglitz, 1970). In the case of
RDU preferences (among others), aversion to single-crossing mean-preserving spreads is
equivalent to aversion to all mean-preserving spreads (multiple-crossing ones included).

17More generally, for any λ ∈ (1, 5/4), one could take w1(p) = λp+ (1− λ)p2 here.
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Thus, u1 is strictly more concave than u2. As w1
′(p) = 9/8− 2/8p ≥ 7

8 > 0
and w1

′′(p) = −2/8 < 0, it also holds that w1 is strictly more concave

than w2. But I1,2u =
1−2/3
1−4/9

2/3−1/3
4/9−1/9

= 3/5 while I1,2w = inf
1>p≥q>0

w1
′(p)

w1
′(q) = 7/8

9/8 = 7/9,

so that I1,2w > I1,2u . By Thm. 1, 1 SMRA 2.

Next, we consider the weakening of SMRA to WMRA. The characteriza-
tion of WMRA under general RDU is a difficult problem on which we have
little progress to report. We observe that this characterization is an open
question even in the convex case. More specifically, even on the assumption
that the utility functions have convex range, providing the result would re-
quire characterizing under RDU the absolute concept of “weak risk aversion”
(i.e., aversion to mean-preserving spreads with the added condition that the
less risky lottery is degenerate). This is a longstanding open problem of the
field (see Chateauneuf and Cohen, 1994; Chateauneuf et al., 1997).

However, as we now explain in several steps, interesting conclusions can
be reached nonetheless. First, as a baseline observation, we recall the charac-
terization of WMRA under EU. It is proved for arbitrary domains as Thm. 2
in Peters and Wakker, 1987.18

Theorem 2 (Peters and Wakker). Let <1 and <2 be two ordinally equiv-
alent EU decision-makers, characterized by the functions u1 and u2, respec-
tively. Then, 1 WMRA 2 if and only if u1 is more concave than u2.

Next, we consider DEU. However preliminary to a characterization under
DEU of WMRA over finite domains, the following result—the crux of which
is not the sufficiency, but the non-necessity part—is new. It seems to have
been previously conjectured (Köbberling and Peters, 2003, Lemma 2.2), but
not proved, to the best of our knowledge.

Observation 2. Assuming that the elements of X are real numbers and X
is a finite set, let <1 and <2 be two DEU decision-makers, characterized
by the functions w1 and w2, respectively. Alternatively, with general X,
let <1 and <2 be two RDU decision-makers, characterized by the pairs of
functions (u1, w1) and (u2, w2), respectively, with u1 = u2 (up to some affine
transformation) and u1, u2 finite-ranged. Then, for 1 WMRA 2 to hold, it is
sufficient but not necessary that for all p ∈ [0, 1], w1(p) ≤ w2(p).

18While the result given next states that under ordinal equivalence, 1 WMRA 2 holds
under EU if and only if u1 is a strictly increasing concave function of u2, Peters and
Wakker show that, absent any assumption about ordinal equivalence or the lack thereof,
1 WMRA 2 holds under EU if and only if u1 is a non-decreasing concave function of u2.
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Proof. Sufficiency is obvious from (11) and the observation that a spread
is basic if the spread conditions hold, for some k, with

∑i
j=1 qj = 0 for all

i ≤ k − 1 and
∑i

j=1 qj = 1 for all i ≥ k. Non-necessity is established by the
following example.

Example 2. Let X = {1, 1/2, 0}. For all x ∈ X, let u1(x) = u2(x) = x.
For all p ∈ [0, 1], let w2(p) = p and w1(p) be defined as follows:19

w1(p) =


5
4p if p ∈

[
0, 2

10

]
5
7p+ 3

28 if p ∈
(

2
10 ,

9
10

)
.

5
2p−

3
2 if p ∈

[
9
10 , 1

] (7)

This is illustrated graphically in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w2

w
1

Figure 2: w1(p) defined as in (7), with w1(p) > w2(p) for all p ∈ (0, 38).

Then, we have that w1(p) < w2(p) for all p ∈
(
3
8 , 1
)
but w1(p) > w2(p) for

all p ∈ (0, 38). Although w1(p) ≤ w2(p) thus does not hold for all p ∈ [0, 1],
it still holds that 1 WMRA 2, as we show in the Appendix.

19More generally, with any α ∈ (0, 1/2), β ∈ (1/2, 1) such that α+ β > 1, one could
here define w1 as the polygon through the points (0, 0), (α, 1/4), (β, 3/4), and (1, 1), i.e.:

w1(p) =


p
4α

if p ∈ [0, α]
1
4
+ p−α

2(β−α) if p ∈ (α, β) .
3
4
+ p−β

4(1−β) if p ∈ [β, 1]
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The full characterization of WMRA under DEU is a problem which we
leave open and hope to solve in future work.

Finally, consider general RDU. However preliminary, the following result—
the crux of which is not the non-necessity, but the sufficiency part—also
seems new, and its relevance will be seen shortly. It builds on insights in
Chateauneuf and Cohen, 1994 and Chateauneuf et al., 2005, respectively.

Observation 3. Let <1 and <2 be two ordinally equivalent RDU decision-
makers, characterized by the pairs of functions (u1, w1) and (u2, w2), respec-
tively. Then, for 1 WMRA 2 to hold, it is sufficient but not necessary that
P 1,2
w ≥ I1,2u and that for all p ∈ [0, 1], w1(p) ≤ w2(p).

Proof. Non-necessity is obvious from Ex. 2, since 1 WMRA 2 holds but
w1(p) ≤ w2(p) for all p ∈ [0, 1] does not. Sufficiency is proved in the Appendix.

Once again, the preceding results about WMRA are preliminary. As
we now explain, they are instructive nonetheless. First, observe that in the
convex case, the following characterizations obtain. Under EU, it still holds
that 1 WMRA 2 if and only if u1 is more concave than u2 (this is because
Peters and Wakker’s result has no domain restriction; assuming u1 and u2
convex-ranged, more specifically, the result could also be obtained as a corol-
lary of the classic characterization of absolute weak risk aversion). Under
DEU, 1 WMRA 2 if and only if, for all p ∈ [0, 1], w1(p) ≤ w2(p) (this is, on
either construal of convexity, a corollary of the characterization of absolute
weak risk aversion; see Quiggin, 1991, Prop. 1, Köbberling and Peters, 2003,
Lemma 2.2, as well as Yaari, 1986). Thus, under EU, WMRA is characterized
identically across the finite and the convex cases. However, the same con-
clusion does not hold under DEU, hence, under RDU more generally. This
much can be claimed even though, once again, the full characterizations of
WMRA under RDU and under DEU are still unknown.

Second, one should put side by side Cor. 1 and Thm. 2 on EU, and Cor. 2
and Obs. 2 on DEU together with Thm. 1 and Obs. 3 on general RDU.
Recall Fact 1 to the effect that 1 SMRA 2 implies 1 WMRA 2 by definition,
while the converse does not hold in general. But under EU, the converse
implication does hold, i.e., 1 WMRA 2 implies 1 SMRA 2. By contrast,
under DEU or under general RDU, the converse implication does not hold,
i.e., it can be that 1 WMRA 2 but not 1 SMRA 2. As a first example, take
any pair of DEU decision-makers with probability weighting functions w1

and w2, respectively, such that i) for all p ∈ [0, 1], w1(p) ≤ w2(p) ii) w1 is
not more convex than w2. Under DEU, condition i) and the negation of
condition ii) are respectively sufficient for WMRA and necessary for SMRA,
so that 1 WMRA 2 but not 1 SMRA 2. As another example, take any
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pair of RDU decision-makers characterized by the pairs of functions (u1, w1)
and (u2, w2), respectively, such that i) P 1,2

w ≥ I1,2u and for all p ∈ [0, 1],
w1(p) ≤ w2(p) ii) I1,2w < I1,2u . Under RDU, condition i) and the negation of
condition ii) are respectively sufficient for WMRA and necessary for SMRA,
so that once again, 1 WMRA 2 but not 1 SMRA 2. The following concrete
example illustrates both possibilities at once.

Example 3. Let X = {4.5, 4.1, 3.1, 3, 2.1, 2, 1.1, 1, 0.5, 0}.20 For all p ∈ [0, 1],
let w2(p) = p and w1(p) be defined as follows:

w1(p) =

{
p(1− p) if p ∈

[
0, 12
]

3(p− 1
2)2 + 1

4 if p ∈
(
1
2 , 1
]
.

(8)

This is illustrated graphically in Figure 3.
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Figure 3: w1(p) defined as in (8).

In the DEU variant of the example, let u1(x) = u2(x) = x. Given that
w2(p) ≤ w1(p) for all p ∈ [0, 1] but w2 is strictly more concave than w1 over
[0, 1/2], we have by Cor. 2 and Obs. 2 that 1 WMRA 2 but not 1 SMRA 2. To
verify the latter, take lotteries l = (1/8, 4.5; 1/8, 4; 1/8, 2; 1/8, 0.5; 1/2, 0) and
l′ = (1/8, 4.1; 1/8, 3.1; 1/8, 2.1; 1/8, 1.1; 1/2, 0). As v1(l) = 53

64 >
50
64 = v1(l

′)
but v2(l) = 25

20 <
26
20 = v2(l

′), we have that l �1 l
′ but l ≺2 l

′. Thus, since
l ` l′, it is not the case that 1 SMRA 2.

20Both variants of the example would deliver the same conclusions if one took, instead
of this finite set X, its convex hull. The DEU variant would then apply without any
change, while the only change in the RDU variant would consist in that I1,2u = 1.
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In the general RDU variant of the example, let u1(x) =
√
x and u2(x) = x.

Then, it can be checked that I1,2u =
u1(4.1)−u1(4)
u2(4.1)−u2(4)
u1(4)−u1(3.1)
u2(4)−u2(3.1)

= 9 (
√
4.1−2)

(2−
√
3.1)
≈ 0.9, that

P 1,2
w = 1 (P 1,2

w ≥ 1 holds since w1(p) ≤ w2(p) for all p ∈ [0, 1], and P 1,2
w ≤ 1

holds since w′1(0) = 1), and that I1,2w =0 (since w′1(
1
2) = 0). Thus it holds

that P 1,2
w > I1,2u > I1,2w , so that by Thm. 1 and Obs. 3, 1 WMRA 2 but not

1 SMRA 2. To verify the latter, take again the lotteries l and l′ previously
specified. As v1(l) ≈ 0.445 > 0.443 ≈ v1(l′) but v2(l) = 25

20 < 26
20 = v2(l

′),
we have that l �1 l

′ but l ≺2 l
′. Thus, since l ` l′, it is not the case that

1 SMRA 2.

Thus, we can now state synthetically how our study improves on the cur-
rent state of the literature on the treatment of risk attitudes in EU and RDU,
respectively. First, from classic results on absolute risk attitudes over convex
domains of real payoffs, it was already known that, unlike RDU, EU imposes
what can be called the “strengthening of risk attitudes” (Chateauneuf et
al., 1997, 2004; Baccelli, 2018). For example, under EU, unlike under RDU,
a decision-maker cannot be weakly, yet not strongly, risk averse. More or
less directly, it then follows that, in the convex case, a similar conclusion
holds true of the strengthening of comparative risk attitudes. Thus, what
our study adds to the current state of the literature in this respect is that,
when the domain is finite, the comparative variant of the strengthening con-
clusion still holds. Indeed, even when the utility functions have finite range,
under EU, it cannot be that 1 WMRA 2 but not 1 SMRA 2, while this is
possible under RDU. We record this fact in the following statement.

Fact 2. When the utility functions have finite range, under EU, WMRA and
SMRA are characterized by the same condition. Under RDU, such is not the
case.

Second, we have also shown that there is a previously unnoticed dimen-
sion along which the different ways in which EU and RDU treat risk attitudes
can be analyzed. To wit, we have introduced the question of whether the
same condition characterizes WMRA (respectively: SMRA) in the finite and
the convex case (convexity referring here either to the domain, or to the
range, of the utility functions). As we have shown, the characterizing con-
dition is the same under EU (viz., greater concavity), but not under RDU.
Recall indeed that under general RDU, in the convex case, 1 SMRA 2 holds
if and only if u1 is more concave than u2 and w1 is more convex than w2,
but that the latter condition is unnecessary in the finite case (see Ex. 1). As
another example, under the special DEU case of RDU, in the convex case,
1 WMRA 2 holds if and only if w1(p) ≤ w2(p) for all p ∈ [0, 1], but this con-
dition is unnecessary in the finite case (see Ex. 2). Thus, notwithstanding
the fact that the complete characterization of WMRA under RDU (or even
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its special DEU case) is currently open question, the findings above can be
summarized as stated next.

Fact 3. Under EU, WMRA (respectively: SMRA) is characterized by the
same condition in the finite and the convex case. Under RDU, such is not
the case.

Admittedly, fully appreciating Fact 3—including how its interpretation should
compare to that of the more straightforward Fact 2—will demand more work.
But it is in any case relevant evidence for understanding the structural differ-
ences between EU and RDU in their respective treatment of risk attitudes.

6 Conclusion

We have investigated notions of weak and strong comparative risk aversion
that are applicable even over a finite, non-numerical domain of payoffs. We
have shown that under expected utility, weak and strong comparative risk
aversion are characterized by the same condition not only when the compared
utility functions have convex range, which was already known, but also when
they have finite range, which had not been hitherto established. We have
also shown that, under expected utility still, weak (respectively: strong) com-
parative risk aversion is characterized by the same condition in the finite and
the convex case, thus introducing a new kind of comparisons to the litera-
ture. As we have explained by contrast in the rank-dependent utility model,
neither of the above conclusions needs to hold under non-expected utility.

As we now illustrate by singling out four possible directions for future
research, our study of risk aversion over finite domains thus raises several
interesting further questions. First, we have left open how to fully character-
ize weak comparative risk aversion in the dual expected utility model. This
task should be more manageable than, and preparatory to, the much more
difficult task of characterizing that attitude under general rank-dependent
utility. As previously noted, the latter problem is tightly connected to a fa-
mous open question of the field. Given the results already available, solving
either of these problems would improve on our current understanding of the
divide between expected and non-expected utility. Second, we have focused
exclusively on either the finite or the convex case. However, it would also
be worth investigating intermediary cases, such as the case of utility func-
tions with a countable range. Through the characterization of weak and
strong comparative risk aversion, such intermediary cases could lead to a
more nuanced understanding of the structural properties of the main models
of decision-making under risk. Third, we have focused exclusively on rank-
dependent utility preferences. One natural next step would be to consider
the larger class of “smooth” non-expected utility preferences, for which char-
acterizations of comparative risk aversion are available in the convex-ranged
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case (Machina, 1982, Sec. 3.3; Cerreia-Vioglio et al., 2016, Sec. 4). An in-
teresting first task would be, then, to determine how these characterizations
should be generalized in the finite-ranged case. Finally, equipped with the
more expressive notions of comparative risk aversion discussed in our paper,
it would be worth revisiting some of the comparative statics exercises already
presented in the literature. For instance, building on Bommier et al., 2012
and Köbberling and Peters, 2003, respectively, the notions we have examined
here could provide new insights on classic comparative statics topics in the
economics of saving behavior or in bargaining theory. Other comparative
statics analysis could be similarly refined.

Appendix

Proof of Observation 1

Proof. The proof of the first claim is obvious, so we focus on the second one.
First, if I1,2w = 1, then w1 is more convex than w2. Second, if w1 is more
convex than w2, then I

1,2
w ≥ 1. But, as we now show, I1,2w ≤ 1 always holds.

More specifically, as we now explain, this fact can be proved either from the
convexity of the domain of the weighting functions, or from the convexity of
their range.

Consider first the proof from the convexity of the domain of the weighting
functions. By the variant of the Lebesgue Differentiability Theorem pertain-
ing to increasing functions, since w1 and w2 are increasing functions from
[0,1] to R, each of w1 and w2 is differentiable almost everywhere in [0,1].
Thus, in particular there exists a point q ∈ (0, 1) where both w1 and w2 are
differentiable. Now, for any large enough n ∈ N, let r, p, s ∈ (0, 1) be given
by r = q, p = q + 1/n, and s = q − 1/n. Thus, 1 ≥ p > q ≥ r > s ≥ 0. Be-
sides, observe that the following equality holds (since w1 and w2 are strictly
increasing, all ratios in this equality are well defined):

w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(s)

=

 w1(p)−w1(q)
p−q

w1(r)−w1(s)
r−s

 ·
 w2(r)−w2(s)

r−s
w2(p)−w1(q)

p−q

 .

Letting n go to infinity, as both p and s converge to q = r, both factors on
the right-hand side of the above equality sign converge to 1, since both w1

and w2 are differentiable at q and q = r. This implies that I1,2w ≤ 1 always
holds.

Consider next the proof from the convexity of the range of the weighting
functions.21 We start by observing that by the defining properties of weight-

21Since weighting functions are defined and strictly increasing over [0,1], the convexity
of the range of w1 and w2 is equivalent to w1 and w2 being continuous over their domain.
As regards the adaptation of the above arguments to prove Cor. 3, notice that a utility
function can be convex-ranged and nevertheless be defined over a non-numerical domain.
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ing functions, the function w1 ◦ (w2)
−1 is well defined. Next, since w2 has a

convex domain, such is also the case of w1 ◦ (w2)
−1. Additionally, since w1

and w2 are strictly increasing, w1 ◦ (w2)
−1 also has this property. Thus, once

again by the variant of the Lebesgue Differentiability Theorem pertaining to
increasing functions, the transformation w1 ◦(w2)

−1 has at least one point of
differentiability. If this point has zero derivative, then I1,2w = 0 ≤ 1. If this
point has non-zero derivative, then it cannot be the case that I1,2w > 1, for
using its four degrees of freedom, the minimand can then be made arbitrary
close to 1. In all cases, then, I1,2w ≤ 1.

Proof of Theorem 1

I1,2w ≥ I1,2u ⇒ 1 SMRA 2.

Proof. Assume I1,2w ≥ I1,2u . We need to show that if l ` l′ and l <1 l′,
then l <2 l

′. Let l = (p1, x1; . . . ; pn, xn) and l′ = (q1, x1; . . . ; qn, xn). Under
RDU, l <1 l

′ if and only if:

n∑
i=1

w1

 i∑
j=1

pj

− w1

 i∑
j=1

qj

(u1(xi)− u1(xi+1)
) ≥ 0. (9)

Define an index i in (9) as null if either u1(xi) = u1(xi+1) or
i∑

j=1
pj =

i∑
j=1

qj ,

and as non-null otherwise. Eliminate all null indices in (9) and let I be the
set of all non-null indices.22 Thus, (9) reads as follows:

∑
i∈I

w1

 i∑
j=1

pj

− w1

 i∑
j=1

qj

(u1(xi)− u1(xi+1)
) ≥ 0, (10)

with the sum in (10) featuring only non-null terms.
Now, by definition, l ` l′ if and only if for some k with 2 ≤ k ≤ n, for all

i ≤ k − 1,
i∑

j=1
pj ≥

i∑
j=1

qj , and for all i ≥ k,
i∑

j=1
pj ≤

i∑
j=1

qj , with at least one

strict inequality in each direction. Accordingly, let I+ (resp. I−) be the set
22Notice that n must be a null index, since

∑n
j=1pj =

∑n
j=1qj = 1. Further notice that

if all indices are null, then l ∼1 l
′ and by the definition of the weighting function or the

ordinal equivalence assumption, l ∼2 l
′ holds as well, which trivially establishes the claim.

Accordingly, one may make the non-triviality assumption that I is not empty.
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of all non-null indices with
i∑

j=1
pj ≥

i∑
i=1

qj (resp.
i∑

j=1
pj ≤

i∑
i=1

qj). Thus, (10)

holds if and only if:

∑
i∈I+

w1

 i∑
j=1

pj

− w1

 i∑
j=1

qj

(u1(xi)− u1(xi+1)
) ≥

∑
i∈I−

w1

 i∑
j=1

qj

− w1

 i∑
j=1

pj

(u1(xi)− u1(xi+1)
) , (11)

with only strictly positive terms, if any, on both sides of the inequality sign
in (11).

Next, let B be:

B =
∏
i∈I

w2

(
i∑

j=1
pj

)
− w2

(
i∑

j=1
qj

)

w1

(
i∑

j=1
pj

)
− w1

(
i∑

j=1
qj

)∏
i∈I

u2(xi)− u2(xi+1)

u1(xi)− u1(xi+1)
, (12)

noticing that:

∏
i∈I−

w2

(
i∑

j=1
pj

)
− w2

(
i∑

j=1
qj

)

w1

(
i∑

j=1
pj

)
− w1

(
i∑

j=1
qj

) =
∏
i∈I−

w2

(
i∑

j=1
qj

)
− w2

(
i∑

j=1
pj

)

w1

(
i∑

j=1
qj

)
− w1

(
i∑

j=1
pj

) .

Similarly, assuming that I is not a singleton,23 let B−l be:

B−l =
∏

i∈I\{l}

w2

(
i∑

j=1
pj

)
− w2

(
i∑

j=1
qj

)

w1

(
i∑

j=1
pj

)
− w1

(
i∑

j=1
qj

) ∏
i∈I\{l}

u2(xi)− u2(xi+1)

u1(xi)− u1(xi+1)
. (13)

Since all i ∈ I are non-null and the ordinal equivalence assumption holds,
B > 0 and similarly, B−l > 0 for all l ∈ I. Thus, (11) holds if and only if:

23If I is a singleton, then it must be that the only non-null index is in I+, for other-
wise the assumption l <1 l

′ would be violated. When there is only one non-null index,
multiplying by B both sides in inequality (11) directly establishes the claim.
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B
∑
i∈I+

w1

 i∑
j=1

pj

− w1

 i∑
j=1

qj

(u1(xi)− u1(xi+1)
) ≥

B
∑
i∈I−

w1

 i∑
j=1

qj

− w1

 i∑
j=1

pj

(u1(xi)− u1(xi+1)
)

⇔
∑
i∈I+

B−i

w2

 i∑
j=1

pj

− w2

 i∑
j=1

qj

(u2(xi)− u2(xi+1)
) ≥

∑
i∈I−

B−i

w2

 i∑
j=1

qj

− w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) . (14)

Next, observe that I1,2w ≥ I1,2u can be rewritten equivalently as:

inf
{p,q,r,s∈[0,1]|p>q≥r>s}

w2(r)−w2(s)
w1(r)−w1(s)

w2(p)−w2(q)
w1(p)−w1(q)

≥ sup
{a,b,c,d∈X|a�b<c�d}

u2(c)−u1(d)
u1(c)−u1(d)
u2(a)−u2(b)
u1(a)−u1(b)

.

Thus, I1,2w ≥ I1,2u implies that for any i ∈ I,

w2

(
i−1∑
j=1

pj

)
− w2

(
i−1∑
j=1

qj

)

w1

(
i−1∑
j=1

pj

)
− w1

(
i−1∑
j=1

qj

) u2(xi−1)− u2(xi)
u1(xi−1)− u1(xi)

≥
w2

(
i∑

j=1
pj

)
− w2

(
i∑

j=1
qj

)

w1

(
i∑

j=1
pj

)
− w1

(
i∑

j=1
qj

) u2(xi)− u2(xi+1)

u1(xi)− u1(xi+1)
.

Thus, I1,2w ≥ I1,2u implies that B−l increases in l. Accordingly, with i∗ the
last index in I+ and l∗ the first index in I−, we have that for all i ∈ I+,
B−i ≤ B−i∗ and for all i ∈ I−, B−i ≥ B−l∗ . Consequently, together with
I1,2w ≥ I1,2u , (14) implies:

B−i∗
∑
i∈I+

w2

 i∑
j=1

pj

− w2

 i∑
j=1

qj

(u2(xi)− u2(xi+1)
) ≥

B−l∗
∑
i∈I−

w2

 i∑
j=1

qj

− w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) . (15)
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Since B−l > 0 for all l ∈ I and B−l increases in l, we have that B−i∗
B−l∗

is well

defined and B−i∗
B−l∗

≤ 1, so that (15) implies:

∑
i∈I+

w2

 i∑
j=1

pj

− w2

 i∑
j=1

qj

(u2(xi)− u2(xi+1)
) ≥

∑
i∈I−

w2

 i∑
j=1

qj

− w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) . (16)

Reestablishing the indices null in (9) and rearranging the equation, we thus
obtain from (16):

n∑
i=1

w2

 i∑
j=1

pj

− w2

 i∑
j=1

qj

(u2(xi)− u2(xi+1)
) ≥ 0, (17)

which, under RDU, holds if and only if l <2 l
′, as was to be shown.

1 SMRA 2 ⇒ I1,2w ≥ I1,2u .

Proof. Recalling our assumption that there are at least three non-indifferent
payoffs, consider any a, b, c, d ∈ X such that u1(a) > u1(b) ≥ u1(c) > u1(d).
Take any p, s ∈ [0, 1] such that p > s. Our first step is the observation that
by the continuity of w1, there exists q, r ∈ (p, s) such that q ≥ r and:

w1(r)− w1(s)

w1(p)− w1(q)
=
u1(c)− u1(d)

u1(a)− u1(b)
. (18)

Our second step is the observation that for any x, y, z ∈ X such that
u1(x) ≥ u1(a) > u1(b) ≥ u1(y) ≥ u1(c) > u1(d) ≥ u1(z), with p > q ≥ r > s,
l, l′ ∈ L given by l = (s, x; (r − s), a; (q − r), y; (p− q), d; (1− p), z) and
l′ = (s, x; (r − s), b; (q − r), y; (p− q), c; (1− p), z) are such that l ` l′. Be-
sides, under RDU, (18) holds if and only if l ∼1 l

′. As 1 SMRA 2, it then
follows that l <2 l

′. Under RDU, l <2 l
′ holds if and only if:

w2(r)− w2(s)

w2(p)− w2(q)
≥ u2(c)− u2(d)

u2(a)− u2(b)
. (19)

Combining inequality (19) and equality (18), we thus have that for those
particular a �1 b <1 c �1 d ∈ X and p > q ≥ r > s ∈ [0, 1]:
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w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(s)

≥
u1(a)−u1(b)
u2(a)−u2(b)
u1(c)−u1(d)
u2(c)−u2(d)

. (20)

Next, call λ the term on the right-hand side of the inequality in (18).
Lemma 1 in Chateauneuf et al. (2005) can then be adapted to establish that:

inf
{p,q,r,s∈[0,1]|p>q≥r>s,

w1(r)−w1(s)
w1(p)−w1(q)

=λ}

w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(s)

= inf
{p,q,r,s∈[0,1]|p>q≥r>s}

w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(s)

. (21)

Thus, (20) implies in particular that:

inf
{p,q,r,s∈[0,1]|p>q≥r>s}

w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(s)

≥ sup
{a,b,c,d∈X|a�1b<1c�1d}

u1(a)−u1(b)
u2(a)−u2(b)
u1(c)−u1(d)
u2(c)−u2(d)

, (22)

which, by the ordinal equivalence assumption, establishes the claim.

Proof of the claim in Example 2

Proof. We need to show that under the assumptions of the example, 1 WMRA 2.
Notice that under these assumptions, under DEU:

1 WMRA 2⇔ (p1, 1; p2, 1/2, p3, 0) <1 1/2⇒ (p1, 1; p2, 1/2, p3, 0) <2 1/2

⇔ w1(p1) ·
1

2
+ w1(p1 + p2) ·

1

2
≥ 1

2
⇒ w2(p1) ·

1

2
+ w2(p1 + p2) ·

1

2
≥ 1

2
⇔ w1(p1) + w1(p1 + p2) ≥ 1⇒ 2p1 + p2 ≥ 1.

Next, case by case, one can check that w1 is such that w1(p) + w1(1− p) < 1
for all p ∈ (0, 1). First, for any p ∈

(
0, 1

10

]
, we have that (1− p) ∈

[
9
10 , 1

)
,

which implies that w1(p)+w1(1−p) = 5
4p+ 5

2 (1− p)− 3
2 = −5

4p+1 < 1. Sec-
ond, for any p ∈

(
1
10 ,

2
10

]
, we have that (1− p) ∈

[
8
10 ,

9
10

)
, which implies that

w1(p) + w1(1− p) = 5
4p+ 5

7 (1− p) + 3
28 = −15

28p+ 23
28 ≤

15
28

2
10 + 23

28 = 6
28 < 1.

Finally, for any p ∈
(

2
10 ,

1
2

]
, we have that (1− p) ∈

[
1
2 ,

8
10

)
, which implies

that w1(p) + w1(1− p) = 5
7p+ 3

28 + 5
7 (1− p) + 3

28 = 6
28 + 5

7 = 26
28 < 1. All

cases where p > 1
2 can be checked analogously by switching the roles of p and

(1 − p) in the above arguments. Now, the fact that w1(p) + w1(1− p) < 1
holds for all p ∈ (0, 1) ensures that 1 WMRA 2 holds. Indeed, this property,
w1(p1) + w1(p1 + p2) ≥ 1, and the fact that w1 is increasing together imply
that p1 + p2 > 1− p1, thus, that 2p1 + p2 ≥ 1, as was to be shown.
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Proof of Observation 3

Proof. Assume P 1,2
w ≥ I1,2u and w1(p) ≤ w2(p) for all p ∈ [0, 1]. We need to

show that if l ` l′, l′ is riskless, and l <1 l
′, then l <2 l

′. The proof closely
resembles that of the sufficiency direction of Thm. 1, so we state it more
succinctly.

First, observe that if l ` l′ and l′ is riskless, then with the same notation
for (and under the same qualifications regarding) non-null indices as in the
proof of Thm. 1, l <1 l

′ implies:

∑
i∈I+

w1

 i∑
j=1

pj

(u1(xi)− u1(xi+1)
) ≥

∑
i∈I−

1− w1

 i∑
j=1

pj

(u1(xi)− u1(xi+1)
) . (23)

Next, let B be:

B =
∏
i∈I+

w2

(
i∑

j=1
pj

)

w1

(
i∑

j=1
pj

) ∏
i∈I−

1− w2

(
i∑

j=1
pj

)

1− w1

(
i∑

j=1
pj

)∏
i∈I

u2(xi)− u2(xi+1)

u1(xi)− u1(xi+1)
, (24)

with the necessary adaptations for B−l, l ∈ I. Given that B > 0, (23) im-
plies:

B
∑
i∈I+

w1

 i∑
j=1

pj

(u1(xi)− u1(xi+1)
) ≥

B
∑
i∈I−

1− w1

 i∑
j=1

pj

(u1(xi)− u1(xi+1)
)

⇔
∑
i∈I+

B−i

w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) ≥

∑
i∈I−

B−i

1− w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) . (25)
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Now, let i∗ ∈ I+ (resp. l∗ ∈ I−) be the index such that for all i ∈ I+

(resp. i ∈ I−), B−i ≤ B−i∗ (resp. B−i ≥ B−l∗). Thus, (25) implies:

B−i∗
∑
i∈I+

w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) ≥

B−l∗
∑
i∈I−

1− w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) . (26)

Next, as w1(p) ≤ w2(p) for all p ∈ [0, 1], one can show (see Chateauneuf
et al., 2005, Prop. 2.(vi)) that the following equality holds:

inf
{p∈(0,1)}

1−w1(p)
1−w2(p)

w1(p)
w2(p)

= inf
{p≥q∈(0,1)}

w2(q)
w1(q)

1−w2(p)
1−w1(p)

. (27)

Accordingly, P 1,2
w ≥ I1,2u can be equivalently stated as follows:

inf
{p≥q∈(0,1)}

w2(q)
w1(q)

1−w2(p)
1−w1(p)

≥ sup
{a,b,c,d∈X|a�b<c�d}

u2(c)−u1(d)
u1(c)−u1(d)
u2(a)−u2(b)
u1(a)−u1(b)

.

Consequently, for any i ∈ I+, l ∈ I−, we have that:

w2

(
i∑

j=1
pj

)

w1

(
i∑

j=1
pj

) u2(xi)− u2(xi+1)

u1(xi)− u1(xi+1)
≥

1− w2

(
l∑

j=1
qj

)

1− w1

(
l∑

j=1
qj

) u2(xl)− u2(xl+1)

u1(xl)− u1(xl+1)
. (28)

Thus, we have that B−i∗
B−l∗

≤ 1, so that (26) implies:

∑
i∈I+

w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) ≥

∑
i∈I−

1− w2

 i∑
j=1

pj

(u2(xi)− u2(xi+1)
) . (29)

Reestablishing the null indices and rearranging the equation, we thus obtain
that l <2 l

′, as was to be shown.
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