A Deep Dive Into BO Sensitivity and PROBO

Julian Rodemann, Thomas Augustin

Young Statisticians Lecture Series (YSLS) IBS-DR Early Career Working Group

May 4, 2022

Agenda

- **1** Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
 - Setup
 - Results
- 4 Prior-Mean-Robust BO (PROBO)
 - Prior near-ignorance models
 - Hedging (1)
 - Batches (2)
 - GLCB (3)
- 5 Application in Material Science

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- 6 Discussion
- 7 Literature
- 8 Appendix

Agenda

1 Bayesian Optimization

- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

Bayesian Optimization

1-d Ackley Function

Note: If not otherwise stated, all figures are based on own computations using ggplot2 [Wickham, 2016], smoof [Bossek, 2017] and mlr(3)MB0 [Bischl et al., 2017]

Bayesian Optimization

E 990

Bayesian Optimization

E 940

Bayesian Optimization

Iter = 3, Gap = 3.8848e-01

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bayesian Optimization

Iter = 4, Gap = 3.8848e-01

Bayesian Optimization

Iter = 5, Gap = 3.8848e-01

Bayesian Optimization

E 990

Bayesian Optimization

E 990

Bayesian Optimization

Bayesian Optimization

BO: Some Applications

- Hyperparamter-tuning, e.g. AlphaGo [Chen et al., 2018]
- Engineering [Frazier and Wang, 2016] [Jones et al., 1998]
- Cognitive science [Shi et al., 2013]
- Climate modeling [Abbas et al., 2014]
- Drug discovery [Pyzer-Knapp, 2018]
 - "prioritizing molecules within the discovery process"
- Or more recently COVID-19 detection [Awal et al., 2021]

Agenda

2 Gaussian Processes

3 Sensitivity Analysis

4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

7 Literature

Gaussian Processes

Definition (Gaussian Process Regression)

A function f(x) is generated by a Gaussian process $\mathcal{GP}(m(x), k(x, x'))$ if for any finite set of data points $\{x_1, ..., x_n\}$, the associated vector of function values $f = (f(x_1), ..., f(x_n))$ has a multivariate Gaussian distribution: $f \sim \mathcal{N}(\mu, \Sigma)$.

Note: For a comprehensive introduction to Gaussian process regression see [Rasmussen, 2003].

Gaussian Processes - Intuition

Functions drawn from a Gaussian process prior

Gaussian Processes - Intuition

Gaussian Processes - Intuition

Image credits: [Moosbauer and Bischl, 2019] $\langle \Box \rangle \langle \Box \rangle \langle$

Gaussian Processes – Prior Components

How to specify $m(\cdot)$, θ_m , θ_k and $k(\cdot, \cdot)$ in absence of prior knowledge?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gaussian Processes – Prior Components

And: Do they even matter?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Agenda

1 Bayesian Optimization

2 Gaussian Processes

- 3 Sensitivity AnalysisSetup
 - Results
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

└─ Sensitivity Analysis

└_ Setup

1 Bayesian Optimization

2 Gaussian Processes

- 3 Sensitivity Analysisa Setupa Results
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

Setup

Setup

- We randomly select 50 synthetic test functions from the R package smoof [Bossek, 2017], stratified across the covariate space dimensions 1, 2, 3, 4 and 7.
- For each of them, a sensitivity analysis is conducted with regard to each of the four prior components.
 - 5 functional forms
 - 5 mean and kernel parameter specifications (relative deviation from global mean)
 - we control for interaction effects
- The initial design of size $n_{init} = 10$ is randomly sampled anew for each of the R = 40 BO repetitions with T = 20iterations each.

Setup

Mean Optimization Path

Definition (Mean Optimization Path)

Given *R* repetitions of Bayesian optimization applied on a test function $\Psi(\mathbf{x})$ with *T* iterations each, let $\Psi(\mathbf{x}^*)_{r,t}$ be the best incumbent target value at iteration $t \in \{1, ..., T\}$ from repetition $r \in \{1, ..., R\}$. The elements

$$MOP_t = \frac{1}{R} \sum_{r=1}^{R} \Psi(\mathbf{x}^*)_{r,t}$$

shall then constitute the *T*-dimensional vector *MOP*, which we call *mean optimization path (MOP)* henceforth.

Setup

Example: MOPs for BO on Schwefel Function

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Setup

Accumulated Difference of MOPs

Definition (Accumulated Difference of MOPs)

Consider an experiment comparing *S* different prior specifications on a test function with *R* repetitions per specification and *T* iterations per repetition. Let the results be stored in a $T \times S$ -matrix of mean optimization paths for iterations $t \in \{1, ..., T\}$ and prior specification $s \in \{1, ..., S\}$ (e.g. constant, linear, quadratic etc. trend as mean functional form) with entries $MOP_{t,s} = \frac{1}{R} \sum_{r=1}^{R} \Psi(\mathbf{x}^*)_{r,t,s}$. The accumulated difference (AD) for this experiment shall then be:

$$AD = \sum_{t=1}^{T} \left(\max_{s} MOP_{t,s} - \min_{s} MOP_{t,s} \right).$$

Sensitivity Analy

Results

1 Bayesian Optimization

2 Gaussian Processes

Sensitivity Analysis
 Setup
 Results

4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

BO	Sensitivity	and	PROBO
----	-------------	-----	-------

Results

Mean	Kernel	Mean	Kernel
functional form	functional form	parameters	parameters
42.49	68.20	77.91	11.40

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Table: Sum of relative ADs of all 50 MOPs per prior specification.

Agenda

- 1 Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)
 Prior near-ignorance models
 - Hedging (1)
 - Batches (2)
 - GLCB (3)

Prior-Mean-Robust BO (PROBO)

Prior near-ignorance models

Agenda

1 Bayesian Optimization

2 Gaussian Processes

3 Sensitivity Analysis

Prior-Mean-Robust BO (PROBO)
Prior near-ignorance models
Hedging (1)
Batches (2)
CLCB (2)

■ GLCB (3)

5 Application in Material Science

Prior-Mean-Robust BO (PROBO)

Prior near-ignorance models

Prior near-ignorance models

- Idea: Use set of θ_m instead of precise θ_m . Fully specify the other components.
- [Mangili, 2015] proposes imprecise Gaussian processes

$$\left\{\mathcal{GP}\left(Mh,k_{\theta}(x,x')+\frac{1+M}{c}\right):h=\pm 1,M\geq 0\right\},$$

given a base kernel $k_{\theta}(x, x')$ and a degree of imprecision c > 0.

 \to results in a set of posteriors whose upper and lower mean estimates $\hat{\mu}(x)_c,\,\overline{\hat{\mu}}(x)_c$ can be derived

Note: See [Benavoli and Zaffalon, 2015] for an introduction to prior near-ignorance models.

Prior-Mean-Robust BO (PROBO)

Prior near-ignorance models

Upper and lower mean estimates

In order to derive upper and lower bounds for the mean estimate, let $k_{\theta}(x, x')$ be a kernel function as defined in [Rasmussen, 2003]. The finitely positive semi-definite matrix K_n is then formed by applying $k_{\theta}(x, x')$ on the training data vector **x**:

$$\boldsymbol{K}_n = [k_{\theta}(x_i, x'_j)]_{ij}. \tag{1}$$

Let x be a scalar input of test data, whose f(x) is to be predicted. Then $\mathbf{k}_x = [k_{\theta}(x, x_1), ..., k_{\theta}(x, x_n)]^T$ is the vector of covariances between x and the training data. Furthermore, name the training target vector y and define $\mathbf{s}_k = \mathbf{K}_n^{-1} \mathbf{1}_n$ as well as $\mathbf{S}_k = \mathbf{1}_n^T \mathbf{K}_n^{-1} \mathbf{1}_n$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Prior-Mean-Robust BO (PROBO)

Prior near-ignorance models

Upper and lower mean estimates

Then [Mangili, 2015] shows that if $\left|\frac{s_k y}{s_k}\right| \le 1 + \frac{c}{s_k}$:

$$\overline{\hat{\mu}}(x) = \boldsymbol{k}_{x}^{T} \boldsymbol{K}_{n}^{-1} \boldsymbol{y} + (1 - \boldsymbol{k}_{x}^{T} \boldsymbol{s}_{k}) \frac{\boldsymbol{s}_{k}^{T}}{\boldsymbol{S}_{k}} \boldsymbol{y} + c \frac{|1 - \boldsymbol{k}_{x}^{T} \boldsymbol{s}_{k}|}{\boldsymbol{S}_{k}} \qquad (2)$$

$$\underline{\hat{\mu}}(x) = \boldsymbol{k}_{x}^{T} \boldsymbol{K}_{n}^{-1} \boldsymbol{y} + (1 - \boldsymbol{k}_{x}^{T} \boldsymbol{s}_{k}) \frac{\boldsymbol{s}_{k}^{T}}{\boldsymbol{S}_{k}} \boldsymbol{y} - c \frac{|1 - \boldsymbol{k}_{x}^{T} \boldsymbol{s}_{k}|}{\boldsymbol{S}_{k}} \qquad (3)$$

Prior-Mean-Robust BO (PROBO)

└─Prior near-ignorance models

Upper and lower mean estimates

If
$$|\frac{\mathbf{s}_{k}\mathbf{y}}{\mathbf{s}_{k}}| > 1 + \frac{c}{\mathbf{s}_{k}}$$
:
 $\overline{\hat{\mu}}(x) = \mathbf{k}_{x}^{T}\mathbf{K}_{n}^{-1}\mathbf{y} + (1 - \mathbf{k}_{x}^{T}\mathbf{s}_{k})\frac{\mathbf{s}_{k}^{T}}{\mathbf{s}_{k}}\mathbf{y} + c\frac{1 - \mathbf{k}_{x}^{T}\mathbf{s}_{k}}{\mathbf{s}_{k}}$

$$(4)$$

$$\underline{\hat{\mu}}(x) = \mathbf{k}_{x}^{T}\mathbf{K}_{n}^{-1}\mathbf{y} + (1 - \mathbf{k}_{x}^{T}\mathbf{s}_{k})\frac{\mathbf{s}_{k}^{T}\mathbf{y}}{c + \mathbf{s}_{k}}$$

$$(5)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

⊢Hedging (1)

1 Bayesian Optimization

2 Gaussian Processes

3 Sensitivity Analysis

4 Prior-Mean-Robust BO (PROBO)
Prior near-ignorance models
Hedging (1)
Batches (2)
GLCB (3)

5 Application in Material Science

Prior-Mean-Robust BO (PROBO)

Hedging (1)

- deploy several $\underline{\mu}(x)_c$, $\overline{\mu}(x)_c$ for varying c as SMs in parallel
- return 2S + 1 optima for S imprecise surrogate models and the precise model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2S additionally proposed optima hedge against prior misspecification
- provides "out-of-the-bag" sensitivity analysis

 \rightarrow stopping criterion?

BO Sensitivity and PROBO Prior-Mean-Robust BO (PROBO) Batches (2)

Agenda

1 Bayesian Optimization

2 Gaussian Processes

3 Sensitivity Analysis

4 Prior-Mean-Robust BO (PROBO)
Prior near-ignorance models
Hedging (1)
Batches (2)
GLCB (3)

5 Application in Material Science

Prior-Mean-Robust BO (PROBO)

Batches (2)

- define initial budget K + 1 of Cores with $S = \frac{K}{2} + 1$ (I)GP models (as in 1.)
- distribute budget B of total evaluations among *M* batches and respective number of Cores $C \in \mathbb{N}^M$ with $C = (K + 1, \lfloor \frac{K+1}{2} \rfloor, \lfloor \frac{K+1}{4} \rfloor, ...)$

A D N A 目 N A E N A E N A B N A C N

• after each $m \in M$ dismiss worst $\frac{K}{2}$ models

BO Sensitivity and PROBO Prior-Mean-Robust BO (PROBO) GLCB (3)

- 1 Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)
 Prior near-ignorance models
 Hedging (1)
 Batches (2)
 GLCB (3)

5 Application in Material Science

Prior-Mean-Robust BO (PROBO)

GLCB (3)

Generalized Lower Confidence Bound (GLCB)

•
$$LCB(x) = -\widehat{\mu}(x) + \tau \cdot$$

$$\underbrace{\sqrt{\mathsf{Var}}(\mu(x))}$$

"classical" uncertainty

•
$$GLCB(x) = -\widehat{\mu}(x) + \tau$$

$$\mu(x)) + \rho \cdot \underbrace{(\overline{\mu}(x)_c - \underline{\mu}(x)_c)}_{(\overline{\mu}(x)_c - \underline{\mu}(x)_c)} + \rho \cdot \underbrace{(\overline{\mu}(x)_c - \underline{\mu}(x)_c)}_{(\overline{\mu}(x)_c - \underline{\mu}(x)_c)}$$

"classical" uncertainty

prior-induced imprecision

(日) (四) (日) (日) (日)

- τ is the degree of risk-aversion
- ρ is the degree of ambiguity-aversion

Prior-Mean-Robust BO (PROBO)

GLCB (3)

Bayesian Optimization

Prior-Mean-Robust BO (PROBO)

GLCB (3)

Bayesian Optimization

Prior-Mean-Robust BO (PROBO)

GLCB (3)

Generalized Lower Confidence Bound (GLCB)

Notably, $\overline{\mu}(\mathbf{x}) - \underline{\mu}(\mathbf{x})$ simplifies to an expression only dependent on predictive kernels $\mathbf{k}_{x} = [k_{\theta}(x, x_{1}), ..., k_{\theta}(x, x_{n})]^{T}$, the base kernel matrix \mathbf{K}_{n} (from training) and the degree of imprecision c. If $|\frac{s_{k}\mathbf{y}}{\mathbf{s}_{k}}| > 1 + \frac{c}{\mathbf{s}_{k}}$:

$$\overline{\hat{\mu}}(x) - \underline{\hat{\mu}}(x) = (1 - \boldsymbol{k}_{x}^{T}\boldsymbol{s}_{k}) \left(\frac{\boldsymbol{s}_{k}^{T}}{\boldsymbol{S}_{k}}\boldsymbol{y} + \frac{c}{\boldsymbol{S}_{k}} - \frac{\boldsymbol{s}_{k}^{T}\boldsymbol{y}}{c + \boldsymbol{S}_{k}}\right)$$
(6)

Prior-Mean-Robust BO (PROBO)

GLCB (3)

Generalized Lower Confidence Bound (GLCB)

For sufficiently high *c*, the model imprecision $\overline{\hat{\mu}}(\mathbf{x}) - \underline{\hat{\mu}}(\mathbf{x})$ even simplifies further:

$$\overline{\hat{\mu}}(x) - \underline{\hat{\mu}}(x) = 2c \frac{|1 - \boldsymbol{k}_x^T \boldsymbol{s}_k|}{\boldsymbol{S}_k}$$
(7)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In this case, GLCB's hyperparameters ρ and c collapse to one.

Application in Material Science

Agenda

- 1 Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

Application in Material Science

Application in Material Science

Experimental set-up of graphene production: "The preparation of a sample to be irradiated requires about **one week**." [Kotthoff, 2019]

Image credits: Lars Kotthoff, University of Wyoming < => < => < => < => < => < >> < <> <<

Application in Material Science

Results – Hedge (1) and Batch (2)

Benchmarking results from BO on Graphene quality function. Data source: [Wahab et al., 2020].

(日) (四) (日) (日) (日)

Application in Material Science

Results – GLCB (3)

BO with GLCB on Graphene function. GLCB-1-50 means GLCB with $\rho = 1$, c = 50. Data source: [Wahab et al., 2020].

・ロト・日本・日本・日本・日本・日本

Agenda

- 1 Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

Discussion

Limitations

- robust only with regard to possible misspecification of the mean function parameter given a constant trend
- how to specify c?
- Venues for future work
 - locally
 - Can we ensure $|\frac{s_k y}{S_k}| \le 1 + \frac{c}{S_k}$ such that hyperparameters c and ρ collapse to one?
 - globally
 - Imprecise probabilities offer vivid framework to represent ignorance in surrogate-assisted derivative-free optimization

- Thanks a lot for your attention!
- Feel free to try out PROBO yourself: https: //github.com/rodemann/gp-imprecision-in-bo
- We are looking forward to your feedback and comments of any kind!

- Discussion

PROBO: Literature

- Rodemann, J.: Robust Generalizations of Stochastic Derivative-Free Optimization. Master's thesis, LMU Munich (2021)¹
- Rodemann, J., Augustin, T.: Accounting for Gaussian Process Imprecision in Bayesian Optimization. In: Honda, K., Entani, T., Ubukata, S., Huynh, V.N., Inuiguchi, M. (eds.) IUKM. Springer Lecture Notes in Computer Science (LNCS). pp. 92–104. Springer, Cham (2022)

¹https://epub.ub.uni-muenchen.de/77441/1/MA_Rodemann.pdf 🕤 <<

Agenda

- 1 Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

Literature

Literature I

- Abbas, M., Ilin, A., Solonen, A., Hakkarainen, J., Oja, E., and Järvinen, H. (2014).
 Bayesian optimization for tuning chaotic systems. *Nonlinear Processes in Geophysics Discussions*, 1(2):1283–1312.
- Awal, M. A., Masud, M., Hossain, M. S., Bulbul, A. A., Mahmud, S. M. H., and Bairagi, A. K. (2021).
 A novel Bayesian optimization-based machine learning framework for COVID-19 detection from inpatient facility data.

```
IEEE Access, 9:10263-10281.
```

Literature

Literature II

Benavoli, A. and Zaffalon, M. (2015).

Prior near ignorance for inferences in the k-parameter exponential family. *Statistics*, 49(5):1104–1140.

 Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., and Lang, M. (2017).
 mlrmbo: A modular framework for model-based optimization of expensive black-box functions. arXiv preprint arXiv:1703.03373.

Literature III

Bossek, J. (2017).

smoof: Single- and multi-objective optimization test functions.

The R Journal.

- Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., and de Freitas, N. (2018).
 Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.
- Frazier, P. I. and Wang, J. (2016).

Bayesian optimization for materials design. In *Information Science for Materials Discovery and Design*, pages 45–75. Springer. Literature

Literature IV

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions.

Journal of Global optimization, 13(4):455–492.

Kotthoff, L. (2019).

Ai for materials science: Tuning laser-induced graphene production and beyond.

Literature V

Mangili, F. (2015).

A prior near-ignorance Gaussian process model for nonparametric regression.

In ISIPTA '15: Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications, pages 187–196.

- Moosbauer, J. and Bischl, B. (2019). Fortgeschrittene computerintensive Methoden - Lecture slides (LMU, Summer term 2019).
- Pyzer-Knapp, E. O. (2018).

Bayesian optimization for accelerated drug discovery. *IBM Journal of Research and Development*, 62(6):2–1. Literature

Literature VI

Rasmussen, C. E. (2003).

Gaussian processes in machine learning. In Summer school on machine learning, pages 63-71. Springer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Shi, Z., Church, R. M., and Meck, W. H. (2013). Bayesian optimization of time perception. Trends in cognitive sciences, 17(11):556–564.

Literature VII

 Wahab, H., Jain, V., Tyrrell, A. S., Seas, M. A., Kotthoff, L., and Johnson, P. A. (2020).
 Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ raman analysis. *Carbon*, 167:609–619.

Wickham, H. (2016).

ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Agenda

- 1 Bayesian Optimization
- 2 Gaussian Processes
- 3 Sensitivity Analysis
- 4 Prior-Mean-Robust BO (PROBO)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Application in Material Science

6 Discussion

