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Note: If not otherwise stated, all figures are based on own computations using
ggplot2 [Wickham, 2016], smoof [Bossek, 2017] and mlr(3)MBO [Bischl et al., 2017]
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Bayesian Optimization

BO: Some Applications

Hyperparamter-tuning, e.g. AlphaGo [Chen et al., 2018]

Engineering [Frazier and Wang, 2016] [Jones et al., 1998]

Cognitive science [Shi et al., 2013]

Climate modeling [Abbas et al., 2014]

Drug discovery [Pyzer-Knapp, 2018]

“prioritizing molecules within the discovery process”

Or more recently COVID-19 detection [Awal et al., 2021]
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Gaussian Processes

Definition (Gaussian Process Regression)

A function f (x) is generated by a Gaussian process
GP (m(x), k(x , x ′)) if for any finite set of data points
{x1, ..., xn}, the associated vector of function values
f = (f (x1), ..., f (xn)) has a multivariate Gaussian distribution:
f ∼ N (µ,Σ) .

Note: For a comprehensive introduction to Gaussian process
regression see [Rasmussen, 2003].
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Image credits: [Moosbauer and Bischl, 2019]
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Gaussian Processes – Prior Components

GP(mθ(x), kθ(x , x ′))

mθ(x)

m(·) θm

kθ(x , x ′)

θk k(·, ·)

How to specify m(·), θm, θk and k(·, ·)
in absence of prior knowledge?
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Gaussian Processes – Prior Components

GP(mθ(x), kθ(x , x ′))

mθ(x)

m(·) θm

kθ(x , x ′)

θk k(·, ·)

And: Do they even matter?
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Setup

Setup

We randomly select 50 synthetic test functions from the R
package smoof [Bossek, 2017], stratified across the
covariate space dimensions 1, 2, 3, 4 and 7.

For each of them, a sensitivity analysis is conducted with
regard to each of the four prior components.

5 functional forms
5 mean and kernel parameter specifications (relative
deviation from global mean)
we control for interaction effects

The initial design of size ninit = 10 is randomly sampled
anew for each of the R = 40 BO repetitions with T = 20
iterations each.
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Setup

Mean Optimization Path

Definition (Mean Optimization Path)

Given R repetitions of Bayesian optimization applied on a test
function Ψ(x) with T iterations each, let Ψ(x∗)r ,t be the best
incumbent target value at iteration t ∈ {1, ...,T} from
repetition r ∈ {1, ...,R}. The elements

MOPt =
1

R

R∑
r=1

Ψ(x∗)r ,t

shall then constitute the T -dimensional vector MOP , which
we call mean optimization path (MOP) henceforth.
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Setup

Example: MOPs for BO on Schwefel Function
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Sensitivity Analysis

Setup

Accumulated Difference of MOPs

Definition (Accumulated Difference of MOPs)

Consider an experiment comparing S different prior
specifications on a test function with R repetitions per
specification and T iterations per repetition. Let the results be
stored in a T × S-matrix of mean optimization paths for
iterations t ∈ {1, ...,T} and prior specification s ∈ {1, ..., S}
(e.g. constant, linear, quadratic etc. trend as mean functional
form) with entries MOPt,s =

1
R

∑R
r=1Ψ(x∗)r ,t,s . The

accumulated difference (AD) for this experiment shall then be:

AD =
T∑
t=1

(
max

s
MOPt,s −min

s
MOPt,s

)
.
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Results

Results

Mean Kernel Mean Kernel
functional form functional form parameters parameters
42.49 68.20 77.91 11.40

Table: Sum of relative ADs of all 50 MOPs per prior specification.
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Prior near-ignorance models

Prior near-ignorance models

Idea: Use set of θm instead of precise θm. Fully specify
the other components.

[Mangili, 2015] proposes imprecise Gaussian processes{
GP

(
Mh, kθ(x , x

′) +
1 +M

c

)
: h = ±1,M ≥ 0

}
,

given a base kernel kθ(x , x
′) and a degree of imprecision

c > 0.

→ results in a set of posteriors whose upper and lower
mean estimates µ̂(x)c , µ̂(x)c can be derived

Note: See [Benavoli and Zaffalon, 2015] for an introduction to prior
near-ignorance models.
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Prior-Mean-Robust BO (PROBO)

Prior near-ignorance models

Upper and lower mean estimates

In order to derive upper and lower bounds for the mean
estimate, let kθ(x , x

′) be a kernel function as defined in
[Rasmussen, 2003]. The finitely positive semi-definite matrix
K n is then formed by applying kθ(x , x

′) on the training data
vector x:

K n = [kθ(xi , x
′
j )]ij . (1)

Let x be a scalar input of test data, whose f (x) is to be
predicted. Then kx = [kθ(x , x1), ..., kθ(x , xn)]

T is the vector of
covariances between x and the training data. Furthermore,
name the training target vector y and define sk = K−1

n 1n as
well as Sk = 1Tn K−1

n 1n.
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Prior near-ignorance models

Upper and lower mean estimates

Then [Mangili, 2015] shows that if | skySk
| ≤ 1 + c

Sk
:

µ̂(x) = kT
x K−1

n y + (1− kT
x sk)

sTk
Sk

y + c
|1− kT

x sk |
Sk

(2)

µ̂(x) = kT
x K−1

n y + (1− kT
x sk)

sTk
Sk

y − c
|1− kT

x sk |
Sk

(3)
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Prior-Mean-Robust BO (PROBO)

Prior near-ignorance models

Upper and lower mean estimates

If | skySk
| > 1 + c

Sk
:

µ̂(x) = kT
x K−1

n y + (1− kT
x sk)

sTk
Sk

y + c
1− kT

x sk
Sk

(4)

µ̂(x) = kT
x K−1

n y + (1− kT
x sk)

sTk y
c + Sk

(5)
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Hedging (1)

Hedging (1)

deploy several µ(x)c , µ(x)c for varying c as SMs in
parallel

return 2S + 1 optima for S imprecise surrogate models
and the precise model

2S additionally proposed optima hedge against prior
misspecification

provides “out-of-the-bag” sensitivity analysis

→ stopping criterion?
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Batches (2)

Batches (2)

define initial budget K + 1 of Cores with S = K
2
+ 1

(I)GP models (as in 1.)

distribute budget B of total evaluations among M batches
and respective number of Cores C ∈ NM with
C = (K + 1,

⌊
K+1
2

⌋
,
⌊
K+1
4

⌋
, ...)

after each m ∈ M dismiss worst K
2
models
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GLCB (3)

Generalized Lower Confidence Bound (GLCB)

LCB(x) = −µ̂(x) + τ ·
√
V̂ar(µ(x))︸ ︷︷ ︸

“classical” uncertainty

GLCB(x) = −µ̂(x) + τ ·
√
V̂ar(µ(x))︸ ︷︷ ︸

“classical” uncertainty

+ρ · (µ(x)c − µ(x)c)︸ ︷︷ ︸
prior-induced imprecision

τ is the degree of risk-aversion
ρ is the degree of ambiguity-aversion
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GLCB (3)

Generalized Lower Confidence Bound (GLCB)

Notably, µ̂(x)− µ̂(x) simplifies to an expression only

dependent on predictive kernels kx = [kθ(x , x1), ..., kθ(x , xn)]
T ,

the base kernel matrix K n (from training) and the degree of
imprecision c . If | skySk

| > 1 + c
Sk
:

µ̂(x)− µ̂(x) = (1− kT
x sk)

(sTk
Sk

y +
c

Sk
− sTk y

c + Sk

)
(6)
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GLCB (3)

Generalized Lower Confidence Bound (GLCB)

For sufficiently high c , the model imprecision µ̂(x)− µ̂(x)
even simplifies further:

µ̂(x)− µ̂(x) = 2c
|1− kT

x sk |
Sk

(7)

In this case, GLCB’s hyperparameters ρ and c collapse to one.
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Application in Material Science

Experimental set-up of graphene production: “The preparation of a
sample to be irradiated requires about one week.” [Kotthoff, 2019]

Image credits: Lars Kotthoff, University of Wyoming
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Results – Hedge (1) and Batch (2)

Batch−Wise Speed Up Parallel Hedging
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Batch−Wise Speed Up

Bayesian Optimization of Graphene Production
40 runs per method with 90 evaluations and initial sample size 10 each
Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
Parallel hedging prior−robust BO with c = 50 (3 models, 30 evaluations each)
Batch−wise speed−up prior−robust BO with c = 1, 10, 100 (3 models, 30 evaluations each)
Same Configurations (AF, Infill Optimizers) for classic BO and both modifications
         

Benchmarking results from BO on Graphene quality function. Data
source: [Wahab et al., 2020].
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Results – GLCB (3)

BO with GLCB on Graphene function. GLCB-1-50 means GLCB
with ρ = 1, c = 50. Data source: [Wahab et al., 2020].
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Discussion

Discussion

Limitations

robust only with regard to possible misspecification of
the mean function parameter given a constant trend
how to specify c?

Venues for future work
locally

Can we ensure | skySk
| ≤ 1 + c

Sk
such that

hyperparameters c and ρ collapse to one?

globally

Imprecise probabilities offer vivid framework to represent
ignorance in surrogate-assisted derivative-free
optimization
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Discussion

Thanks a lot for your attention!

Feel free to try out PROBO yourself: https:
//github.com/rodemann/gp-imprecision-in-bo

We are looking forward to your feedback and comments
of any kind!

https://github.com/rodemann/gp-imprecision-in-bo
https://github.com/rodemann/gp-imprecision-in-bo
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PROBO: Literature

Rodemann, J.: Robust Generalizations of Stochastic
Derivative-Free Optimization. Master’s thesis, LMU
Munich (2021) 1

Rodemann, J., Augustin, T.: Accounting for Gaussian
Process Imprecision in Bayesian Optimization. In: Honda,
K., Entani, T., Ubukata, S., Huynh, V.N., Inuiguchi, M.
(eds.) IUKM. Springer Lecture Notes in Computer
Science (LNCS). pp. 92–104. Springer, Cham (2022)

1https://epub.ub.uni-muenchen.de/77441/1/MA_Rodemann.pdf

https://epub.ub.uni-muenchen.de/77441/1/MA_Rodemann.pdf
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