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Abstract
Self-training is a simple yet effective method within

semi-supervised learning. The idea is to iteratively
enhance training data by adding pseudo-labeled data.
Its generalization performance heavily depends on the
selection of these pseudo-labeled data (PLS). In this
paper, we aim at rendering PLS more robust towards
the involved modeling assumptions. To this end, we
propose to select pseudo-labeled data that maximize
a multi-objective utility function. The latter is con-
structed to account for different sources of uncertainty,
three of which we discuss in more detail: model selec-
tion, accumulation of errors and covariate shift. In the
absence of second-order information on such uncer-
tainties, we furthermore consider the generic approach
of the generalized Bayesian 𝛼-cut updating rule for
credal sets. As a practical proof of concept, we spot-
light the application of three of our robust extensions
on simulated and real-world data. Results suggest that
in particular robustness w.r.t. model choice can lead to
substantial accuracy gains.1
Keywords: Semi-Supervised Learning, Self-Training,
Generalized Bayes, Model Selection, Covariate Shift,
Generalized Updating Rules

1. Introduction
Labels for observations are burdensome to obtain in a myr-
iad of applied learning tasks ranging from image classifica-
tion [69] over financial econometrics [66] to genomics [25].
This scarcity of labeled data has given rise to the paradigm of
semi-supervised learning (SSL). Within SSL, self-training
(also called pseudo-labeling) is often considered the most
straight-forward approach [65, 37, 48]. Self-training follows
the general rationale of iteratively assigning pseudo-labels
to unlabeled data according to the model’s predictions.
More precisely, the idea is to predict classes of unlabeled
data by means of a model trained on labeled data and in-

1Open Science: Implementations of the proposed methods and re-
producible scripts for the experimental analysis are available at:
www.github.com/rodemann/reliable-pls.

clude some of the predictions as pseudo-labeled data in the
training data, before predicting on the remaining unlabeled
data again. This process requires a criterion (called confi-
dence measure) for pseudo-label selection (PLS), that is,
the selection of pseudo-labeled instances to be added to
the training data. What most of these confidence measures
have in common is the fact of stemming uniquely and ex-
clusively from one sole model. The paper at hand aims at a
selection of pseudo-labeled data with regard to a variety of
(fitted) models, rendering PLS robust with regard to model
imprecision. The latter can have multiple sources. Section 3
discusses how to deal with three of them in detail: model
selection, accumulation of errors and covariate shift. In
case such sources are not identifiable, we propose a generic
robust approach to PLS in section 4, building on the rich
literature on credal sets and generalized Bayesian inference.
The remainder of this section discusses related work and in-
troduces semi-supervised learning formally, leaning on [61].
The paper concludes with a brief real world application and
some concluding remarks in chapters 5 and 6.

1.1. Semi-supervised Learning

The vast majority of SSL methods is concerned with classifi-
cation tasks [73, 13]. Loosely leaning on [71], we formalize
SSL as follows. Consider labeled data

D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 ∈ (X × Y)𝑛 (1)

and unlabeled data

U = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=𝑛+1 ∈
(
X × 2Y

)𝑚−𝑛
(2)

from the same data generation process, where X is the
feature space and Y is the categorical target space. The
aim of SSL is to learn a predictive classification function
𝑦̂𝜃 (𝑥) parameterized by 𝜃 utilizing both D and U. The
objective can be twofold [71]. On the one hand, one simply
aims at labeling U (transductive learning). On the other
hand, and more commonly, both D and U can be used
to learn a prediction function to predict any unseen test

© J. Rodemann, C. Jansen, G. Schollmeyer & T. Augustin.

https://github.com/rodemann/reliable-pls


Rodemann Jansen Schollmeyer Augustin

data (inductive learning) in a more accurate way than only
relying on D as in classical supervised learning.

1.2. Self-training

According to [53] and [73], SSL can be broadly categorized
into self-training and co-training. We will focus on the for-
mer, whose general idea is commonly described as fitting
a model on D by empirical risk minimization and then
exploiting this model’s predictions to label U. Typically,
those instances from U are added whose predictions are
most confident according to some confidence measure. The
predicted probability (probability score) is among the most
popular ones [71]. Besides, the predictions’ variance as well
as a linear combination of variance and probability score
are used [55]. Regarding the inclusion of pseudo-labeled
data from U to D, [71] and [35] distinguish between in-
cremental, batch-wise, and amending mechanisms. The
incremental approaches label instances one-by-one in a
sequential fashion, whereas batch-wise and amending tech-
niques allow for adding of multiple data points or removal of
data, respectively. Moreover, [71] differentiate self-training
methods into single- and multi-classifier ones, depending on
the number of learned classifiers 𝑦̂(𝑥) used while labeling.
If multiple classifiers are used, they can either be based
on the same model class or a variety of models. This is
known as single- versus multi-learning, see [71] for instance.
Combining and aggregating the predictions and confidence
measures of multiple classifiers can be done in various ways.
This is slightly related to our proposed model-robust PLS,
see sections 3 and 4. The difference is of course that we
select pseudo-labeled data in the light of multiple models,
while multi-learning deploys multiple models for predicting
pseudo-labels.

Additionally, self-training algorithms may have different
stopping criteria [71]. A naive option is to label and add the
entire set U. Alternatively, one could stop when 𝑦̂(𝑥), the
predictive classifier, no longer changes due toU, leaving the
remaining data in U unlabeled. In this paper, we propose
both incremental and batch-wise approaches that can be
used with any stopping criterion for the purpose of inductive
learning.

1.3. Superset Learning

The notion of superset learning is a generalization of semi-
supervised learning. Instead of completely unlabeled (i.e.
fully ambiguos) data U = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=1 ∈

(
X × 2Y )𝑚, su-

perset learning considers {(𝑥𝑖 , 𝑌𝑖)}𝑚𝑖=1 ∈
(
X × 2Y )𝑚, where

𝑌𝑖 ⊆ Y. In this context, 𝑌𝑖 is regarded a superset of a “true”
underlying singleton 𝑦𝑖 , thus the name. There exist opti-
mistic as well as pessimistic variants of superset learning and
approaches to balance these extreme cases [27, 28, 29, 60].
The general idea is to find a singleton representation (often

called instantiation) of the supersets that corresponds to the
most predictive (optimistic) or least predictive (pessimistic)
model when trained and evaluated on it. In the optimistic
case, this can be achieved by minimizing an optimistic
version of the empirical risk, the generalized empirical
risk: 1

𝑛

∑𝑛
𝑖=1 𝐿

∗ ( 𝑦̂𝑖 , 𝑌𝑖) = 1
𝑛

∑𝑛
𝑖=1 min𝑦∈𝑌𝑖 𝐿 ( 𝑦̂𝑖 , 𝑦) with 𝐿∗

the optimistic superset or infimum loss [9].

1.4. Robust Semi-Supervised Learning

The robustness of SSL and in particular of self-training has
been widely discussed. [3] propose an information-theoretic
approach to pseudo-label prediction which is resistant to
covariate shift. [74] worked to make self-training more
robust to modeling assumptions by allowing model selec-
tion through the deviance information criterion. Coming
close to our use of credal sets in section 4, [41, 42] suggest
identifying pseudo-labels as sets of probability distributions
(“credal self-supervised learning”). Inspired by consistency
regularization [8, 67, 76], superset learning [27, 28, 29, 60]
and distributional alignment [36], “credal self-supervised
learning” aims at decreasing the reliance on a single distri-
butional assumption. Our work follows the same rationale,
while being conceptually different: [41, 42] start by impre-
cisiation of the training data by means of soft labels through
data augmentation, thus obtaining set-valued predictions.
In this paper, we exploit the expressiveness of credal sets
only in the selection phase. Generally, there appears to
be a large body of research on robustifying predictions in
SSL by means of Bayesian techniques [22, 51, 1], weighted
likelihood [68], conditional likelihood [23], and joint mix-
ture likelihood [2]. On the other hand, there is only limited
(Bayesian) or hardly any (likelihood-based) work regarding
robust versions of Bayesian or likelihood-based selection of
pseudo-labels, which is the very idea of the paper at hand.
The authors of [40] quantify the uncertainties of pseudo-
labels by mixtures of predictive distributions of a neural
net, utilizing MC dropout, thus simulating a Bayesian setup
without explicitly considering the posterior predictive. More
recently, [52] proposed PLS with respect to the entropy of
the pseudo-labels’ posterior predictive distribution.

[61] tackle the problem of pseudo-label selection (PLS)
in semi-supervised learning from the viewpoint of decision
theory, proposing Bayes optimal pseudo-label selection
(BPLS). The idea is to make PLS more robust towards the
initial fit by marginalizing over the parameters’ posterior
instead of considering the predictive distribution of a single
best parameter vector. While this allows for selecting pseudo-
labeled data in light of more than one fit of a given model,
BPLS is still restricted to the assumed (type of) model and
the distributional assumptions that come with it. This is the
very starting point for several robust extensions of BPLS,
that will be presented in the main part of this paper, namely
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sections 3 and 4. To begin with, we introduce the conditional
view on PLS in section 2.1. This allows our understanding
of (B)PLS as decision problems, as explained in section 2.2.

2. Pseudo-Label Selection
2.1. Conditional Pseudo-Label Selection

As in standard self-training, we start by fitting a parametric
model 𝑀 with unknown parameter vector 𝜃 ∈ 𝛩 on labeled
dataD = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1. In this work, we assume𝛩 to be com-
pact and denote dim(𝛩) = 𝑞. Note that Bayesian inference
smoothly integrates in this setup, since we might state a prior
function over𝛩 for a given parametric model𝑀 as 𝜋(𝜃 | 𝑀).
We aim at learning the conditional distribution of 𝑝(𝒚 | 𝒙)
through 𝜃 from observing features 𝒙 = (𝑥1, . . . , 𝑥𝑛), 𝑥𝑖 ∈ X,
and classes 𝒚 = (𝑦1, . . . , 𝑦𝑛), 𝑦𝑖 ∈ Y in D. As touched
upon in sections 1.1 and 1.2, we start by estimating 𝜃 ∈ 𝛩
from 𝑀 through the labeled data D, predict on unlabeled
data U and select those predicted (pseudo-labeled) data
points that we are most confident in according to some
selection criterion and add them to D.

Most importantly, throughout this paper, we do not deal
with predicting unknown labels of U = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=1 by
the fitted model on D. Rather, we are primarily concerned
with the problem of selecting from those already predicted.
That is, we identify each element in U = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=𝑛+1 ∈(
X × 2Y )𝑚−𝑛 with its corresponding prediction {(𝑥𝑖 , 𝑦̂)}𝑖 ,

obtaining Û = {(𝑥𝑖 , 𝑦̂)}𝑚𝑖=𝑛+1 ∈ (X × Y)𝑚−𝑛 . However,
we will stick with U in the following to emphasize that
our reasoning holds for any functional 𝑦̂(𝑥). This is not to
say that we completely abstain from any specifications of
the prediction method, see remark 7, where we will rely on
maximum-likelihood estimation.

2.2. PLS as Decision Problem

Following [61], we formalize pseudo-label selection as a
canonical decision problem with likelihood utility and thus
lay the groundwork for several robust extensions of classical
decision criteria.

Definition 1 (Canonical Decision Problem) Define
(𝔸, 𝛩, 𝑢(·)) as decision-theoretic triple with an action
space 𝔸, an unknown set of states of nature 𝛩 and a utility
function 𝑢 : 𝔸 ×𝛩 → ℝ.

Throughout this section, we are concerned with the de-
cision of selecting pseudo-labeled data, where an action
corresponds to the selection of an instance from the unla-
beled data 𝔸U = {(𝑧,Y) | ∃ 𝑖 ∈ {𝑛 + 1, . . . , 𝑚} : (𝑧,Y) =
(𝑥𝑖 ,Y)𝑖 ∈ U}, i.e., instances as actions 𝔸U ∋ 𝑎 = (𝑧,Y).
This is in stark contrast to statistical decision theory, where
estimators instead of data are to be selected. The decision

for an action is guided by a utility function. Closely follow-
ing [61] and loosely inspired by [10, 11], we proceed by
defining the utility of a selected data point (𝑧,Y) = (𝑥𝑖 ,Y)𝑖
as the plausibility of being generated jointly with D by a
model 𝑀 with states (parameters) 𝜃 ∈ 𝛩 if we include it
with its predicted pseudo-label 𝑦̂(𝑧) = 𝑦̂(𝑥𝑖) = 𝑦̂𝑖 ∈ Y in
D ∪ (𝑥𝑖 , 𝑦̂𝑖), see definition 2.

Definition 2 (Pseudo-Label Likelihood as Utility)
Given D and the prediction functional 𝑦̂ : X → Y, we

define the following utility function

𝑢 : 𝔸U ×𝛩 → ℝ

((𝑧,Y), 𝜃) ↦→ 𝑢((𝑧,Y), 𝜃) = 𝑝(D ∪ (𝑧, 𝑦̂(𝑧)) | 𝜃, 𝑀),

which is said to be the pseudo-label likelihood. In the
following, for ease of exposition, we will write ℓ(𝑖) :=
𝑝(D := 𝑝(𝑖 | 𝜃, 𝑀) ∪ (𝑥𝑖 , 𝑦̂(𝑥𝑖)) | 𝜃, 𝑀) for the pseudo-
label likelihood.

Based on this embedding of PLS in decision theory,
classical decision criteria such as max-max or the Bayes
criterion can be derived. [61, chapter 2.2] shows that the
former corresponds to optimistic superset learning [28]
and the latter to the posterior predictive of data to be
pseudo-labeled 𝑝(D∪(𝑥𝑖 , 𝑦̂𝑖) | D, 𝑀), subsequently called
pseudo posterior predictive (PPP). The max-max-criterion
is defined by 𝛷𝑚 : 𝔸U → ℝ; 𝑎 ↦→ max𝜃 𝑢(𝑎, 𝜃). Each
element of arg max𝛷𝑚 is then called a max-max-action.
The Bayes-criterion given 𝜋 is defined by 𝛷𝜋 : 𝔸U →
ℝ; 𝑎 ↦→ 𝔼𝜋 (𝑢(𝑎, 𝜃)). Each element of arg max𝛷𝜋 is then
called Bayes-action.

3. Robust PLS: In All Likelihoods
Within common approaches to self-training in SSL, it might
well be possible to generalize and robustify models used for
predicting pseudo-labels. In the following, however, we aim
at robust selection of pseudo-labeled data, see section 2.1.
To this end, we will modify the generic utility function
(definition 2) and the respective Bayes criterion [61, chapter
2.2] to account for three frequent sources of uncertainty and
imprecision: model selection, accumulation of errors and
covariate shift. Instead of relying on likelihood utilities from
models that are assumed to be correct “in all likelihood”,
we suggest relying on all likelihoods from multiple models.

3.1. Model Selection: Reversing Occam’s razor

An obvious and ubiquitous source of imprecision is the
model choice: The likelihood under which distributional
assumption (and corresponding model) should be taken
into account? So far, we have defined the pseudo-label
likelihood as the one under the model 𝑀 that we have
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used for predicting pseudo-labels. Albeit, this is far from
necessary. As discussed above, our conditional approach to
choosing pseudo-labeled data renders this selection com-
pletely orthogonal to predicting pseudo-labels. Instead of
defining the utility function (see 2) as the likelihood of
observing the pseudo-labeled data under the assumptions of
model 𝑀 , we might as well consider 𝑀̃ or a weighted sum
of likelihoods under several models. In what follows, we
start with the generic case of any finite number of different
models that can be parameterized in a meaningful way and
work our way through nested models, ending with nested
generalized linear models, and discuss how to account for
their specifications in PLS.

3.1.1. Generic Case

Start by considering any 𝑀1, . . . , 𝑀𝐾 , 𝐾 < ∞, different
parametric models specified on respective parameter spaces
𝛩1, . . . , 𝛩𝐾 . Denote by 𝛩̃ = ×𝐾

𝑘=1𝛩𝑘 their Cartesian prod-
uct and by 𝑓𝑘 : 𝛩̃ → 𝛩𝑘 , 𝑘 ∈ {1, . . . , 𝐾} the projections
from the Cartesian product to each 𝛩𝑘 . We can easily
extend the pseudo-label likelihood utility (definition 2)
to account for several models, inducing a multiobjective
decision problem.

Definition 3 (Multi-Model Likelihood Utility) As in def-
inition 2 consider D and pseudo-labels 𝑦̂ ∈ Y from
𝑦̂ : X → Y as given. The 𝐾-dimensional utility function

𝑢 : 𝔸U × 𝛩̃ → ℝ𝐾

((𝑥𝑖 ,Y)𝑖 , 𝜃) ↦→ (ℓ(𝑖, 1), . . . , ℓ(𝑖, 𝐾))′

shall be called multi-model likelihood. We write ℓ(𝑖, 𝑘) =
𝑝(𝑖 | 𝑓𝑘 (𝜃), 𝑀𝑘) = 𝑝(D ∪ (𝑧, 𝑦̂(𝑧)) | 𝑓𝑘 (𝜃), 𝑀𝑘) with
𝜃𝑘 ∈ 𝛩𝑘 for brevity. Let 𝐾 again denote the number of
models under consideration.

For the optimization of such a multiobjective utility
considered in definition 3 one is faced with a multicriteria
decision problem. For such decision problems there are
lots of solution strategies. One modern way to deal with
a multidimensional utility function was recently proposed
in [32]. The idea is – utilizing that each single dimension
considered is perfectly cardinal – to embed the image of
the utility function into a preference system A, i.e. into
a specific order-theoretic structure allowing for modeling
spaces with locally cardinal scale of measurement.2 Each
such preference system is then describable by a set of
functions NA , where each element of this set is of the form
𝜙 : [0, 1]𝐾 → [0, 1].

2A preference system is a triplet A = [𝐴, 𝑅1, 𝑅2 ] consisting of a
non-empty set 𝐴 ≠ ∅, a pre-order 𝑅1 ⊆ 𝐴 × 𝐴 on 𝐴, and a pre-order
𝑅2 ⊆ 𝑅1 × 𝑅1 a on 𝑅1. Intuitively, the relation 𝑅1 captures the available
ordinal information, whereas 𝑅2 encodes the information’s cardinal part.

The selection of the optimal unlabeled data would then
consequently be based on this same set NA . To generalize
the already mentioned Bayes criterion to this set of utility
functions, there are a lot of possibilities (for a compilation
of these see in particular [31]). We will only briefly discuss
here the one among them that does not need to make any ad-
ditional assumptions and is a consequential generalization
of first-order stochastic dominance to our partial cardinal
setting. The idea of this generalization is straightforward: If
still 𝜋 denotes the prior distribution on the set𝛩 of states of
nature (= parameters), then now – instead of choosing unla-
beled data that maximize expected utility w.r.t. some fixed
utility function – we exclude all unlabeled data which is
expectation-dominated by some other data for all compatible
functions 𝜙 : [0, 1]𝐾 → [0, 1]. More formally, the solution
to the decision problem from definition 3 with respect to this
generalized stochastic dominance criterion is then given by
the set𝔸𝜋

U defined by {𝑎 | �𝑎′ : 𝑑𝜋 (𝑎′, 𝑎) ≥ 0∧𝑑𝜋 (𝑎, 𝑎′) <
0}, where, for 𝑎1, 𝑎2 ∈ U𝔸, we set 𝑑𝜋 (𝑎1, 𝑎2) =

inf𝜙∈NA [𝔼𝜋 (𝜙 ◦ 𝑢(𝑎1, ·)) − 𝔼𝜋 (𝜙 ◦ 𝑢(𝑎2, ·))] .
Importantly, note that all elements remaining in the above

set are incomparable with respect to the considered criterion
of optimality, that is, each of them is an equally plausible
candidate for the best next unlabeled data point. In case
domain-specific knowledge induces a preference for some
of the models under consideration that can be expressed
by weights, one might as well simply scalarize the single
likelihoods as follows.

Definition 4 (Weighted Sum of Likelihoods) The utility
function 𝑢 : 𝔸U × 𝛩̃ → ℝ;

((𝑥𝑖 ,Y)𝑖 , 𝜃) ↦→
∑︁
𝑘

𝑤𝑘 · ℓ(𝑖, 𝑘),

with weights 𝑤𝑘 ∈ (0, 1), 𝑘 ∈ {1, . . . , 𝐾} summing up to 1,
shall be called weighted sum of likelihoods.

The respective Bayes criterion (cf. section 2.2) with multi-
model likelihood utility is a weighted sum of posterior
predictives of pseudo-labeled data (cf. ibid.). This fact
follows directly from theorem 2 in [61] as well as from the
additivity and homogeneity of the expected value.

Remarkably, the following should be noted: The Bayes-
optimal pseudo-labeled data, i.e. the optimal solutions of
the decision problem for selecting pseudo-labeled data ac-
cording to the Bayes criterion, are always elements of the
set 𝔸𝜋

U considered before. This means in particular that
the aforementioned generalized stochastic dominance and
the Bayes criterion based on multi-model likelihood utility
are compatible in the sense that the latter – independent of
the concrete weights – ensures that no labels excluded by
the former are chosen. This suggests the following recom-
mendation for criterion selection in concrete application
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situations: If no content-motivated way of choosing the
weights of the multi-model likelihood utility is available,
further analysis should rely on the set 𝔸𝜋

U alone. If, on the
contrary, there is the possibility to determine the weights
informed by the content, the Bayes criterion based on the
multi-model likelihood utility provides more precise and –
then also non-arbitrary – results. We now consider a case
where a natural choice of weights via penalization of model
complexity is appropriate, namely nested models.

3.1.2. Nested Models

Now let the models under consideration 𝑀1, . . . , 𝑀𝐾 , 𝐾 <

∞, be nested in the sense of 𝛩1 ⊆ 𝛩2 ⊆ · · · ⊆ 𝛩𝐾 . We
can interpret the so-induced hierarchy on the parameter
space such that the lower 𝑘 ∈ {1, . . . , 𝐾}, the simpler the
hypothesis space. Aiming at regularization of PLS, we
could penalize the respective likelihood utilities of more
complex models. In definition 4, this could imply e.g. setting
𝑤𝑘 =

dim(𝛩𝑘 )
dim(𝛩𝐾 ) for all 𝑘 ∈ {1, . . . , 𝐾}.3

However, we will opt for a safer approach that guarantees
plausibility of at least some pre-specified level 𝜏 under all
models 𝑀1, . . . , 𝑀𝐾 . We therefore draw on the common
practice of thresholding selection criteria when selecting
pseudo-labeled data in self-training. That is, not only one
data point with highest selection function value but all above
a threshold are to be selected. We propose to extent this
to an intersection of thresholds resulting from likelihood
utilities from different models.

Definition 5 (Bayesian Multi-Model Threshold Criterion)
As in definition 2, let (𝑥𝑖 ,Y)𝑖 be any decision (selection)
from 𝔸U . We assign utility to each (𝑥𝑖 ,Y)𝑖 given D and
pseudo-labels 𝑦̂ ∈ Y by the multi-model likelihood utility
function from definition 3. Now consider the following
thresholding Bayes criterion𝛷𝜏, 𝜉 , 𝜋 : 𝔸U → ℝ

𝑎 ↦→𝛷𝜏, 𝜉 , 𝜋 (𝑎) =


0, ∃𝑘 : 𝔼𝜋 (ℓ(𝑖, 𝑘)) < 𝜏
0.5, ∀𝑘 : 𝜏 < 𝔼𝜋 (ℓ(𝑖, 𝑘)) < 𝜉,
1, else.

again with ℓ(𝑖, 𝑘) = 𝑝(𝑖 | 𝑓𝑘 (𝜃), 𝑀𝑘), 𝑘 ∈ {1, . . . , 𝐾},
and 𝜉 > 𝜏 some pre-specified thresholds.

Note that this corresponds to thresholding all pseudo
posterior predictive, respectively, see section 2.2. For para-
metric models like additive regressions with 𝐾 = 𝑑𝑖𝑚(𝛩)
we can exploit the hierarchy among models induced by the
number of parameters 𝐾 . Before running the procedure (see
algorithm 1), we start by thresholding pseudo-labeled data
based on the full model (𝐾 covariates). We refit with lower

3One could also weight the likelihoods ℓ (𝑖, 1) , . . . , ℓ (𝑖, 𝐾 ) directly
in the general case of the multiobjective utility from definition 3.

threshold if no data is selected. If a positive number of data
is selected, we kick off the algorithm. We begin decreasing
𝑘 in a step-wise manner and terminate the process if none
of the pseudo-labeled data that were selected in all previous
rounds makes it past the threshold. The pseudo-code in
algorithm 1 describes the procedure.

Algorithm 1 Reversed Occam’s Razor
Data: D,U, set S𝐾+1 = ∅
Result: D
for 𝑘 ∈ {𝐾, . . . , 1} do

for 𝑖 ∈ {1, . . . , |U|} do
predict Y ∋ 𝑦̂𝑖 = 𝑦̂(𝑥𝑖)
evaluate 𝔼𝜋 (ℓ(𝑖, 𝑘))

end
select U ⊇ S𝑘 = {(𝑥𝑖 , 𝑦̂𝑖)𝑖 | 𝛷𝜏, 𝜉 , 𝜋 (𝑎) = 1, 𝑎 ∼ 𝑖}
if S𝑘 ∩ S𝑘+1 ≠ ∅ : update D = D ∪ S𝑙
else stop

end

We thus ensure not only ∀𝑘 ∈ {1, . . . , 𝐾} : S𝑘 ≠ ∅, but
also

⋂
𝑘=1,...,𝐾

S𝑘 ≠ ∅. That is, among those elements that

can be explained equally well by a fixed model, we opt for
those that are explained similarly well by simpler models.
This can be viewed as reversing Occam’s razor, since we
are concerned with selecting data instead of hypotheses.
Occam’s time-honored razor advocates selecting the hypoth-
esis with least assumptions among competing hypotheses
that have the same explanatory power regarding a single
phenomenon. Conversely, we consider multiple phenom-
ena and choose those ones which can still be explained
by the simplest hypothesis from a set of competing ones.
Occam’s razor can be operationalized by Bayesian statistics
through the marginal likelihood (or Bayesian evidence),
see [33, 54, 44, 43] for instance. Recall that the Bayesian
selection of pseudo-labeled data corresponds to selection
with regard to the posterior predictive which is nothing but
a marginalized version of the pseudo-labeled data’s likeli-
hood.4 Just like in model selection by Bayesian evidence or
Bayes factors (i.e., ratios of marginal likelihoods), we are
concerned with how well data can be explained by a model.
The only difference is that we are interested in comparing
(pseudo-)data by how likely it is given a model and not vice
versa.

3.2. Accumulation of Errors: In All Posteriors?

The most inherent uncertainty in PLS is caused by the fact
that pseudo-labeled data are treated as ground truths in
subsequent iterations.

4Marginalized with regard to the posterior.
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Definition 6 (Multi-Label Likelihood as Utility) As in
definition 2, let (𝑧,Y) be any decision (selection) from
𝔸U . Conversely to definition 2, we now consider not only
the predicted pseudo-labels 𝑦̂𝑖 ∈ Y, but also all other
hypothetical labels 𝑦̃𝑖 ∈ Y \ {𝑦̂𝑖}. Denote by 𝑦̃𝑖, 𝑗 ∈ Y
all possible labels for (𝑥𝑖 ,Y)𝑖 with 𝑗 ∈ {1, . . . , 𝐽} and
𝐽 = |Y|. We assign utility to each (𝑥𝑖 ,Y)𝑖 by the following
utility function 𝑢 : 𝔸U ×𝛩 → ℝ;

((𝑧,Y), 𝜃) ↦→
𝐽∑︁
𝑗=1
𝑤 𝑗 · 𝑝(D ∪ (𝑧, 𝑦̃𝑖, 𝑗 ) | 𝜃, 𝑀)

with weights 𝑤 𝑗 ∈ (0, 1) summing up to 1. This utility
function shall be called multi-label likelihood.

Again, the respective Bayes criterion is a weighted sum
of posterior predictives of pseudo-labeled data (cf. sec-
tion 2.2), because of theorem 2 in [61] and the additivity
and homogeneity of the expected value. A logical choice
for the weights 𝑤 𝑗 ∈ (0, 1) would be the predicted proba-
bility of the respective 𝑗-th label, i.e. 𝑝((𝑧,Y) = (𝑧, 𝑦̃ 𝑗 ,𝑖)).
This appears quite intuitive. However, while allowing to
characterize the unlabeled data points by their plausibilty
with hypothetically assigned labels one is still forced to add
them with their actually predicted label.

As of now, we loosen this restriction. Notably, definition 2
and thus all subsequent deliberations depended on a model
𝑀 as well as on already predicted labels. We have relaxed the
former dependency, while having left the latter untouched.
The following remark calls this into question.

Remark 7 (Sub-Optimal Labels Are Not Redundant)
Consider 𝑢 : 𝔸U × 𝛩 → ℝ from definition 2 with
𝑦̂𝑖 = 𝑦̂𝜃𝑀𝐿 (𝑥𝑖) and 𝜃𝑀𝐿 = arg max𝜃 𝑝(D | 𝜃, 𝑀) the
maximum-likelihood estimator. Furthermore, consider
𝑢 : 𝔸U ×𝛩 → ℝ;

((𝑧,Y), 𝜃) ↦→ 𝑢((𝑧,Y), 𝜃) = 𝑝(D ∪ (𝑧, 𝑦̃(𝑧)) | 𝜃, 𝑀),

where 𝑧 = 𝑥𝑖 and 𝑦̃(𝑧) = 𝑦̃𝑖 = 𝑦̂𝜃 (𝑥𝑖) with any sub-optimal
𝜃 ∈ 𝛩 such that 𝑝(D | 𝜃, 𝑀) ≤ 𝑝(D | 𝜃𝑀𝐿 , 𝑀). It holds
that the max-max-action 𝑎∗𝑚 = max𝑎 max𝜃 𝑢(𝑎, 𝜃) w.r.t. 𝑢
does generally not have lower utility than the max-max-
action 𝑎̃∗𝑚 = max𝑎 max𝜃 𝑢(𝑎, 𝜃) w.r.t. 𝑢̃. To see this, let
𝑎∗𝑚 be the max-max action under 𝑢 as above. It holds
𝑎∗𝑚 = max𝑎 max𝜃 (𝑝(D ∪ (𝑧, 𝑦̂𝑖) | 𝜃, 𝑀)) = max𝑎 𝑝(D ∪
(𝑧, 𝑦̂𝑖) | 𝜃𝑀𝐿 , 𝑀). Analogously, 𝑎̃∗𝑚 maximizes 𝑝(D ∪
(𝑧, 𝑦̃𝑖) | 𝜃𝑀𝐿 , 𝑀). As both (𝑧, 𝑦̃𝑖) and (𝑧, 𝑦̂𝑖) were not
considered in ML estimation, we cannot make any statement
about the relation of 𝑢(𝑎∗𝑚) to 𝑢̃(𝑎̃∗𝑚). The same holds for
the Bayes criterion, as also the posterior of 𝜃 does not
include (𝑧, 𝑦̃𝑖) and (𝑧, 𝑦̂𝑖) either.

Motivated by this remark, let us now consider the standard
utility (definition 2) on a different action space 𝔸̃U =

{(𝑧, 𝑦 𝑗 ) | 𝑦 𝑗 ∈ Y and ∃ 𝑖 ∈ {𝑛 + 1, . . . , 𝑚} : (𝑧,Y) =

(𝑥𝑖 ,Y)𝑖 ∈ U} and a modified (full) Bayes criterion that
accounts for a prior 𝜌 on Y that weights labels proportional
to the predictive distribution from the prediction step before,
i.e., 𝔼𝜌 (𝛷𝜋 (𝑎)) = 𝔼𝜌𝔼𝜋 (𝑢(𝑎, 𝜃)).

Proposition 8 (Full Bayes Equates Weighted Utility)
In case of 𝑤 𝑗 = 𝜌(𝑦 𝑗 ) the Bayes criterion under multi-label
utility (definition 6) defined on 𝔸̃U instead of 𝔸U equals
the (full) Bayes criterion 𝔼𝜌 (𝛷𝜋 (𝑎)) on 𝔸U .

Proof 𝔼𝜌𝔼𝜋 (𝑢(𝑎, 𝜃)) =
∫
Y

∫
𝛩
𝑢(𝑎, 𝜃) 𝑑𝜋(𝜃) 𝑑𝜌(𝑦 𝑗 ) =∫

Y 𝑝(D ∪ (𝑧, 𝑦 𝑗 ) | 𝜃, 𝑀) 𝑑𝜌(𝑦 𝑗 ) =
∑

Y 𝑝(D ∪ (𝑧, 𝑦 𝑗 ) |
𝑀) 𝜌(𝑦 𝑗 ) =

∑
𝑗 𝑝(D ∪ (𝑧, 𝑦 𝑗 ) | 𝑀) 𝜌(𝑦 𝑗 )

3.3. Covariate Shift

Selection criteria typically render some unlabeled data more
likely to be added than others [59]. In the course of self-
training, this can lead to a distributional shift of 𝑋 , often
referred to as covariate shift. Depending on the stopping
criterion, this covariate shift can be propagated to the final
model, potentially harming the model’s interpretability
by techniques from the realm of interpretable machine
learning (IML). For instance, regions in the covariate space
where data is scarce are detrimental to reliable estimates
of partial dependencies [18]. Notably, this distributional
shift affects all previously discussed selection criteria for
PLS. In this subsection, we discuss possible extensions
that aim at selecting pseudo-labeled data that are optimal
with regard to both the de facto selected data D and a
hypothetical i.i.d. sample D′ that we generate by drawing
pseudo-labeled data randomly. In the spirit of the multi-
model likelihood utility (definition 3) and in complete
analogy to the previously discussed generalizations, we can
define a multi-data likelihood utility, rendering PLS robust
with regard to covariate shift. The above discussed decision
criteria apply as well. Further note that in this special
case of a bi-objective, one might also proceed with an
interval-valued utility (loss) function as e.g. in [63, section
3.2].

Definition 9 (Multi-Data Likelihood Utility) We assign
utility to each (𝑥𝑖 ,Y)𝑖 given D, D′ and the prediction
functional 𝑦̂ : X → Y by the following bi-objective utility
function 𝑢 : 𝔸U ×𝛩 → ℝ2;

((𝑧,Y), 𝜃) ↦→ (ℓD (𝑖), ℓD′ (𝑖))′,

with ℓD (𝑖) = 𝑝(D ∪ (𝑥𝑖 , 𝑦̂𝑖) | 𝜃, 𝑀) and ℓD′ (𝑖) = 𝑝(D′ ∪
(𝑥𝑖 , 𝑦̂𝑖) | 𝜃, 𝑀).
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4. Updating by 𝛼-cuts
All robust extensions of PLS discussed in section 3 require
some second-level information about the involved uncer-
tainties (e.g., model choice, previous confidence, covariate
shift). Aiming at an agnostic and universally robust ap-
proach to PLS, we turn to imprecise probabilities [75, 5]
and credal sets [38, 39], more specifically to the fruitful
frameworks of convex sets of priors [62], 𝛤-maximin [64]
and 𝛼-cut updating [11, 12].

4.1. Updating Credal Sets

Due to our aforementioned general skepticism regarding
the initial model fit 𝜃, we would like to weaken the influ-
ence of the likelihood on the posterior in a general way.
This can be achieved by means of generalizing Bayesian
analysis [75, 62, 5]. Again, we can avail ourselves of rich
decision theoretical literature dating back to [16, 34, 7].
We will borrow from the theory on Max-E-Min [34] or
equivalently 𝛤-maximin, see for instance [64, 7, 19, 72, 26].
To this end, we introduce a convex set of priors 𝛱 ⊆ {𝜋(𝜃) |
𝜋(·) a probabilty measure on (𝛩, 𝜎(𝛩))} with 𝛩 compact
as above and 𝜎(·) an appropriate 𝜎-algebra.5. The rough
idea now is this: After observing data, we base our selec-
tion (action) on the prior from 𝛱 that corresponds to the
lowest posterior from the set of resulting posteriors. In
other words, we hedge against the worst-case prior. In a
nutshell, we select the pseudo-labeled instance that would
have had the highest expected utility (likelihood) if we had
specified the prior in such a way that it contradicted the
(potentially overfitted) model’s likelihood the most. The
respective decision criterion would be the 𝛤-maximin cri-
terion 𝛷𝛱 : 𝔸U → ℝ; 𝑎 ↦→ 𝛷(𝑎) = 𝔼𝛱 (𝑢(𝑎, 𝜃)) with
𝔼𝛱 (𝑢(𝑎, 𝜃)) = inf 𝜋∈𝛱 𝔼(𝑢(𝑎, 𝜃)) the lower expectation,
which we assume to be affinely superadditive (thus equating
coherent lower previsions) in the following. This will allow
us to exploit the 𝛼-cut updating rule introduced by [12] for
lower previsions. The lower expectation corresponds to the
posterior predictive with regard to the posterior that results
from updating the prior 𝜋∗ (·) ∈ 𝛱 that has the lowest value
in the maximum-likelihood estimator 𝜃𝑀𝐿 .

Such an approach, however, might be too much of a
good thing, since its respective decisions can completely
disregard the likelihood, not to mention its high sensitivity
towards 𝛱 . Instead, we opt for an updating rule of credal
sets leaning on [11, 12]6: Cattaneo’s 𝛼-cut updating rule
with 𝛼 ∈ (0, 1), also referred to as “soft revision” [4]. Its

5The priors in 𝛱 can reflect uncertainty regarding prior information,
but might as well represent priors near ignorance, see e.g. [6, 46, 45, 56,
57, 58]

6Updating rules of similar nature have already been introduced
by [50, 49, 20]. Notably, [21, p. 46f] introduced the special case of 𝛼 = 1
as “type 2 maximum likelihood”, see also [7, section 3.5.4].

rough idea is to only update those priors whose respective
marginal likelihood (evidence) is larger or equal than 𝛼
times the corresponding maximum marginal likelihood. In
other words, the priors whose (relative) likelihood is below
𝛼 are discarded from the set of lower expectations, before
updating all prior lower expectations to posterior lower
expectations in this set. This implies restricting the set of
alle posteriors to

{𝜋 ∈ 𝛱 | 𝑚(𝜋) ≥ 𝛼 · max
𝜋
𝑚(𝜋)}, (3)

with 𝑚(ℓ, 𝜋) =
∫
𝛩
ℓ(𝜃)𝜋(𝜃)𝑑𝜃 the marginal likelihood.

This way, we can make sure no decision is made in complete
disregard of the likelihood, i.e., based on a 𝜃 with tiny
likelihood.

What is more, the 𝛼-cut updating rule allows for a dy-
namically adaptive selection of pseudo-labelled data. Note
that each predicted pseudo-label 𝑦̂ comes with a predicted
probability 𝑝 𝑦̂ ∈ [0, 1] for 𝑦̂ to be the true label. After
selecting (𝑥𝑖 ,Y)𝑖 with respective (𝑥𝑖 , 𝑦̂𝑖), the probability
𝑝 𝑦̂ represents our belief in the data D∪(𝑥𝑖 , 𝑦̂𝑖) under which
the subsequent model’s likelihood is specified.7 More gen-
erally, in iteration 𝑡 of SSL, our belief in the pseudo-labeled
data is

∏𝑇
𝑡=1 𝑝 𝑦̂,𝑡 . We thus could update 𝛱 in iteration 𝑡

by 𝛼-cuts such that 𝛼𝑡 =
∏𝑇
𝑡=1 𝑝 𝑦̂,𝑡 . The interpretation of

such an adaptive 𝛼-cut rule is this: The less we trust the
pseudo-labeled data, the wider the cuts should be, since we
want to make sure not to down-weight a 𝜃 only because
our possibly flawed data says so. Vice versa, if we trust
the pseudo-labeled data, we can be more restrictive with
regard to the cuts. While providing this strong intuition,
we could not find any guarantees for an updating rule of
this kind so far. Hence, in what follows, we will motivate
an updating rule for SSL based on the expected regret of
having considered specific predictions from one specific
model in PLS.

4.2. A Regret-Based Updating Rule

The previous deliberations on model selection (section 3.1)
and non-redundancy of sub-optimal labels (remark 7) moti-
vate our modification of the 𝛼-cut updating rule for PLS: We
update 𝛱 such that our Bayes action has some quantifiable
guarantee with regard to a regret (as ratio, see definitions 10
through 12) that stems from both the possibly wrong labels
and the possibly wrong models.8 Thus, we start by quanti-
fying these two regrets as random variables on 𝛩, before
defining the total regret as a (posterior) expectation of a
function of the two regrets.

7Not without a dash of impudence, we might as well borrow from
frequentist reasoning and interpret 1 − 𝑝̂𝑦̂ as frequency of error.

8Note that reasoning with both sets of priors and model imprecision
is reminiscent of [75, chapter 8]
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Definition 10 (Label-Induced Regret) Consider 𝑦̃𝑖, 𝑗 ∈
Y all possible labels for (𝑥𝑖 ,Y)𝑖 with 𝑗 ∈ {1, . . . , 𝐽} and
𝐽 = |Y|. As in remark 7, let 𝑢̃ 𝑗 be the pseudo-label likelihood
𝑢̃ 𝑗 (·, ·) (definition 2) with 𝑦̃𝑖 = 𝑦̃𝑖, 𝑗 . Furthermore, set 𝑦̂𝑖,ℎ =
𝑦̂𝜃 (𝑥𝑖) as actually predicted label, see remark 7. For any
given decision 𝑎∗ and any 𝜃, the function 𝑟𝑙 (·, 𝑎∗) : 𝛩 → ℝ;

𝜃 ↦→ 𝑟𝑙 (𝜃, 𝑎∗) = sup
𝑗

𝑢 𝑗 (𝜃, 𝑎∗)
𝑢̃ℎ (𝜃, 𝑎∗)

is said to be the label-induced regret.

Definition 11 (Model-Induced Regret) Let 𝑀1, . . . , 𝑀𝐾
and𝛩1, . . . , 𝛩𝐾 denote all models under consideration and
their parameter spaces, respectively, as well as 𝛩̃ = ×𝐾

𝑘=1𝛩𝑘
their Cartesian product. As in definition 3, consider as
ℓ(𝑖, 𝑘) = 𝑝(𝑖 | 𝑓𝑘 (𝜃), 𝑀𝐾 ) the likelihood utility of selecting
(𝑥𝑖 ,Y)𝑖 given model 𝑀𝑘 with the projection on 𝛩𝑘 . In
analogy to definition 10, denote by 𝑀ℎ the actually used
model. For any decision 𝑎∗=̂ 𝑖∗ and any 𝜃 ∈ 𝛩̃, the function
𝑟𝑚 (·, 𝑎∗) : 𝛩̃ → ℝ;

𝜃 ↦→ 𝑟𝑚 (𝜃, 𝑎∗) = sup
𝑘

ℓ(𝑖∗, 𝑘)
ℓ(𝑖∗, ℎ)

is said to be the model-induced regret.

Definition 12 (Total Prediction Regret in SSL) Denote
by 𝑢̃ 𝑗 ,𝑘 (𝜃, 𝑎∗) the utility of 𝑎∗=̂ 𝑖∗ with prediction 𝑦̃𝑖∗ , 𝑗 under
model 𝑀𝑘 . The function 𝑟 (·, 𝑎∗) : 𝛩̃ → ℝ

𝜃 ↦→ 𝑟 (𝜃, 𝑎∗) =
sup 𝑗 ,𝑘 𝑢̃ 𝑗 ,𝑘 (𝜃, 𝑎∗)
𝑢̃ℎ,ℎ (𝜃, 𝑎∗)

shall be be called total (prediction) regret.

Definition 13 (Expected Total Regret Functional)
Based on definition 12, the expectation functional
𝛩 × 𝛱 → ℝ; (𝜃, 𝜋) ↦→ 𝔼𝜋 (𝑟 (𝜃, 𝑎∗)) for given 𝑎∗ ∈ 𝔸U
with posterior 𝜋 ∈ 𝛱 is said to be the expected total regret
functional.

We can now define an 𝛼-cut updating rule such that the
posterior credal set is

𝛱𝛼 = {𝜋 ∈ 𝛱 | 𝑚(ℓℎ,ℎ, 𝜋) ≥ 𝛼 · sup
𝑗 ,𝑘

𝑚(ℓ 𝑗 ,𝑘 , 𝜋)}. (4)

Note that this is just a robustified version of the generic
𝛼-cut updating according to equation 3, such that it gives us
the following guarantee with regard to the expected regret.

Proposition 14 (Myopic Regret-Guarantee of 𝛼-Cuts)
Bayes optimal selections 𝑎∗ of pseudo-labeled data under
the above 𝛼-cut updating rule have expected total regret
𝔼𝜋 (𝑟 (𝜃, 𝑎∗)) ≤ 1

𝛼
for any posterior 𝜋 ∈ 𝛱 .

Proof Consider any 𝜋 ∈ 𝛱𝛼. It holds ∀𝑎 ∈ 𝔸U :
𝑚(ℓℎ,ℎ, 𝜋) ≥ 𝛼 · sup 𝑗 ,𝑘 𝑚(ℓ 𝑗 ,𝑘 , 𝜋). With 𝑚(ℓ, 𝜋) the
marginal likelihood w.r.t. to 𝜋 we get: ∀𝑎 ∈ 𝔸U :∫
𝛩
ℓℎ,ℎ (𝜃)𝜋(𝜃)𝑑𝜃 ≥ 𝛼 · sup 𝑗 ,𝑘

∫
𝛩
ℓ 𝑗 ,𝑘 (𝜃)𝜋(𝜃)𝑑𝜃 =⇒

∀𝑎 ∈ 𝔸U : 𝔼𝜋 (ℓℎ,ℎ (𝜃)) ≥ 𝛼 · 𝔼𝜋 (sup 𝑗 ,𝑘 ℓ 𝑗 ,𝑘 (𝜃)) ≥
𝛼 · sup 𝑗 ,𝑘 𝔼𝜋 (ℓ 𝑗 ,𝑘 (𝜃)). In particular for 𝑎∗ ∈ 𝔸U we

have 1
𝛼

≥ sup 𝑗,𝑘 𝔼𝜋 (𝑢̃ 𝑗,𝑘 (𝑎∗ , 𝜃 ) )
𝔼𝜋 (𝑢̃ℎ,ℎ (𝑎∗ , 𝜃 ) ) ≥ 𝔼𝜋 (sup 𝑗,𝑘 𝑢̃ 𝑗,𝑘 (𝑎∗ , 𝜃 ) )

𝔼𝜋 (𝑢̃ℎ,ℎ (𝑎∗ , 𝜃 ) ) =

𝔼𝜋 (𝑟 (𝜃, 𝑎∗)) with ℓ 𝑗 ,𝑘 (𝜃) = 𝑢̃ 𝑗 ,𝑘 (𝑎, 𝜃).

The 𝛼-cut updating rule was motivated as continuous
updating rule by [12]. This continuity still holds tor the
regret-based 𝛼-cut updating, as follows directly from [12,
theorem 3].

4.3. Generalized Stochastic Dominance under IP

In the case of using the multi-model likelihood utility from
definition 3 (rather than a weighted-sum of its components)
together with a credal-prior 𝛱 , the criterion of generalized
stochastic dominance addressed in section 3.1.1 can also be
easily adapted. Instead of the solution set 𝔸𝜋

U used under
precise 𝜋, here we would move to the solution set 𝔸𝛱U
robustified under the IP model and defined by

{𝑎 | �𝑎′ : 𝐷 (𝑎′, 𝑎) ≥ 0 ∧ 𝐷 (𝑎, 𝑎′) < 0}, (5)

where, for 𝑎1, 𝑎2 ∈ U𝔸, we set 𝐷 (𝑎1, 𝑎2) =

inf 𝜋∈𝛱 𝑑𝜋 (𝑎1, 𝑎2). The interpretation of the set 𝔸𝛱U ro-
bustified by 𝛱 is similar to the interpretation of the set
𝔸𝜋

U under precise 𝜋: It contains all pseudo-labeled data 𝑎
which are not strictly dominated with respect to generalized
stochastic dominance by another pseudo-labeled data 𝑎′ for
no matter which prior 𝜋 ∈ 𝛱 . Put formally, we thus have
that 𝔸𝛱U =

⋂
𝜋∈𝛱 𝔸𝜋

U . Again, similar to the 𝛼-cuts method,
there are ways to reduce the set of non-excludable pseudo-
labels by transitioning from sets NA and 𝛱 to (reasonably
chosen) subsets N ⊂ NA and 𝛱̃ ⊂ 𝛱 in the definition of
the set 𝔸𝛱U .

Such a reduction of the set might be desirable, since –
depending on the richness of sets NA and 𝛱 – set 𝔸𝛱U
might contain too many (possibly even all) available options.
In the case of the set NA , a natural way of reduction is
discussed in [31] and further deepened in [30]: Instead of
considering all possible representatives 𝜙 of the underlying
preference system, here it is proposed to consider only
those that evaluate strict comparability in the underlying
partial order above some pre-specified threshold 𝜉 ∈ [0, 1].
Also for the reduction of the set 𝛱 a completely natural
possibility offers itself: One can simply shrink the set 𝛱
by transitioning to the set 𝛱̃ = 𝛱𝛼 from equation (4) for
some reasonable value of 𝛼. Of course, also combinations
of both reduction methods can be used.

8
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5. Application
Most of the above decision criteria require the computation
of the pseudo posterior predictive (PPP) that involves a
possibly intractable integral. MCMC sampling is the usual
Bayesian way to circumvent such issues. This in turn usually
comes at the cost of some computational hurdles. In order
to avoid them, we lean on the analytical approximation of
the PPP proposed [61, chapter 3]. For the sake of computa-
tional feasibility, we further approximate the log-likelihood
given D∪ (𝑥𝑖 , 𝑦̂𝑖) by the log-likelihood given D, obtaining:
𝑝(D ∪ (𝑥𝑖 , 𝑦̂𝑖) | D, 𝑀) ≈ 2ℓ(𝜃𝑀𝐿) − 1

2 log|I(𝜃𝑀𝐿) | with
𝐼 (𝜃𝑀𝐿) the Fisher information-matrix. We use this approxi-
mation to implement three of the above proposed extensions
of PLS: multi-label utility (def. 6) as both unweighted and
weighted (see proposition 8) sum as well as multi-model
utility (def. 3). We benchmark semi-supervised logistic
regression with these robust PLS criteria against four com-
mon PLS criteria (probability score, posterior predictive
(Bayes action), likelihood (max-max action) and predictive
variance) as well as a supervised baseline. For the latter,
we abstain from self-training and only use the labeled data
for training. Experiments are run on simulated binomially
distributed data and real world data sets from the UCI
machine learning repository [15]. Since target classes are
fairly balanced in all data sets, we compare the methods
w.r.t. to (test) accuracy. We average the test accuracy for
all data sets over a number of repeated self-training rounds
each with a new random train-test split. The results are
promising: For simulated data, PLS w.r.t multi-model PPP
achieves accuracy gains of up to 15 percentage points.9

Here, we spotlight the application of our methods on the
banknote data [17, 70] that contains measures (diagonal
length, bottom margin, length of bill) of 100 genuine and 100
counterfeit Swiss franc banknotes. The learning task at hand
is to classify banknotes based on these covariates. Figure 1
shows the average accuracy (evaluated on unseen test data,
averaged over 40 repetitions) of different PLS methods
for 80% unlabeled data. For the multi-model approach, all
possible covariate combinations were considered. While
multi-model PPP outperforms competing PLS methods,
the multi-label extension fails to even beat the supervised
baseline. Apparently, it is not worth considering alternative
classifications given the initial supervised accuracy is that
high (∼ 0.966).

6. Discussion
We have introduced a number of robust extensions of PLS,
some of which in turn surfaced avenues for future work.
For instance, the accumulated expected errors (section 3.2)

9For all results, more details on the experiments and reproducible
code, please refer to www.github.com/rodemann/reliable-pls.
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Figure 1: Results from Banknote Data.

could be used as adaptive learning rate in fractional Bayesian
updating [77, 24, 14]. Future work might also focus on im-
plementing and testing the generic generalizations based
on 𝛼-cuts, as introduced in section 4. Conclusively, PLS
appears to be a promising field for applying existing fruitful
frameworks for robust statistical learning such as general-
ized Bayesian updating using credal sets or more specific
multi-model and multi-label robustification. Most of them
can potentially be easily transferred to PLS when taking
the view on PLS as decision problem. This might not only
increase the credibility of the inference by weakening the
assumptions, leaning on Manski’s “law of decreasing credi-
bility” [47]. It can also, as preliminary evidence suggests,
increase predictive performance substantially. In particu-
lar, our experiments indicate that considering alternative
model specifications as well as non-predicted labels in PLS
appears to be a promising and fruitful. Further research is
also needed on clarifying interactions among different kind
of robustifications (between multi-label and multi-model
PLS, for instance).
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