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Depth Function

Depth Functions measure centrality and outlingless of a data point with
respect to a data cloud or an underlying distribution.

Figure: Tukey depth
15 randomly drawn points
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Depth Function

Depth Functions measure centrality and outlingless of a data point with
respect to a data cloud or an underlying distribution.

Figure: Simplicial Depth
(see https://en.wikipedia.org/wiki/Simplicial_depth,
visited: 20.10.23)
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Depth Function: Properties

Let F be a set of probability measures on Rd with d ∈ N. Let D : Rd × F → R≥0
be bounded, then D is1

1 Affine invariance: The depth function is invariant under change of the
coordinate system.

2 Maximality at center: If the probability function has a unique center then the
depth function has its maximum value at this center.

3 Monotonicity relative to deepest point: The depth function decreases with
respect to the value with the maximal depth.

4 Vanishing at infinity: The depth function converges to zero if the norm of the
point sequence converges to infinity.

5 Quasiconcavity: For every α ≥ 0 the set consisting of a depth values larger
than α is a convex set.

1see Zou et.al. (2000) and Mosler (2013)
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Depth Function: Properties

Figure: Tukey depth
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Non-Standard Data

Non-Standard Data summarizes all data types that are given non standard
statistical data types.

→ no metric or other presupposed data structure is imposed on the
observations/data.

Examples:
1 The set of partial orders (e.g. comparing ml algorithms or food)
2 Mixed (numeric + nominal + . . .) data (e.g. observing spatial observations

together with marks like age, education, crime, ...)
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Overall Aim:

Define a Depth Function and Resulting Statistics for
Non-Standard Data

→ Formal Concept Analysis
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Formal Concept Analysis

Definition (Formal Context)
A formal context is given by a triple K = (G ,M, I). G corresponds to the set of
objects, M to the set of attributes and I defines a binary relation between G and
M.2

The derivation operators

ψ: 2G → 2M ,A 7→ A′ ..= {m ∈ M | ∀g ∈ A: gIm},
φ: 2M → 2G ,B 7→ B′ ..= {g ∈ G | ∀m ∈ B: gIm}.

We call the set φ ◦ ψ(2G) the set of extents.

2see Ganter et.al. (2012)
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Formal Concept Analysis: Closure System and Implications

This gives us
1 the closure system {A′′ | A ⊆ G} on G which describes the formal context

and
2 a family of implications which describes the closure system completely. Let

A,B ⊆ G . We say premise A implies conclusion B iff

ψ ◦ φ(A) ⊇ ψ ◦ φ(B).

We denote this by A → B.

Summary:

Data Set
scaling
method−−−−→ Formal Context φ,ψ←−→ Closure System φ,ψ←−→ Family of Implications
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A formal context for spatial data

The formal context K is given by
1 G = Rd

2 M = {H | H is halfspace in Rd}
3 I = {(g ,H) ∈ G × M | g ∈ H}
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A formal context for partial orders

Definition
Let M be a set. Then (M,≤) is a partial order if and only if for all a, b, c ∈ M

1 Reflexivity: a ≤ a,
2 Antisymmetry: if a ≤ b and b ≤ a then a and b are the same element, and
3 Transitivity: if a ≤ b and b ≤ c then a ≤ c

holds.
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A formal context for partial orders

Let P be the set of all partial orders on X = {x1, . . . , xn} with n ∈ N.

The formal context K is given by
1 G = P
2 M = {“xi ≤ xj” | i , j = 1, . . . , n, i ̸= j}︸ ︷︷ ︸

=:M≤

∪ {“xi ̸≤ xj” | i , j = 1, . . . , n, i ̸= j}︸ ︷︷ ︸
:=M̸≤

3 I = {(g ,m) ∈ G × M | m is true for g}

This corresponds to the closure operator which maps each subset
{g1, . . . , gm} ⊆ P = G , m ∈ N to

{g ∈ P | ∩m
i=1gi ⊆ g ⊆ ∪m

i=1gi}.
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A formal context for partial orders

Let X = {A,B,C}. Consider the set {po1, po2} and its implications.

We obtain
1 {po1, po2} implies {po1, po2, po3}, but
2 {po1, po2} does not imply {po4}.
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Adaptation to Data Represented via FCA:

What does centrality mean in this context?
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Recall: Properties of the depth functions in Rd

Let F be a set of probability measures on Rd with d ∈ N. Let D : Rd × F → R≥0
be bounded, then D is3

1 Affine invariance: The depth function is invariant under change of the
coordinate system.

2 Maximality at center: If the probability function has a unique center then the
depth function has its maximum value at this center.

3 Monotonicity relative to deepest point: The depth function decreases with
respect to the value with the maximal depth.

4 Vanishing at infinity: The depth function converges to zero if the norm of the
point sequence converges to infinity.

5 Quasiconcavity: For every α ≥ 0 the set consisting of a depth values larger
than α is a convex set.

3see Zou et.al. (2000) and Mosler (2013)
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General Definition of Depth Functions on FCA

Definition
We define a depth function using formal concept analysis4 by

DG : G × κG × PG → R≥0

for a
1 fixed set of objects G and
2 a set of formal contexts κG ⊆ {K | G is object set of K}.
3 PG is a set of probability measures on G defined on a σ-field which contains

all extent sets of the corresponding formal contexts of κG .

4see Blocher et.al. (2023b)
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What does centrality mean in this context?

(P1) Invariance on the extents: Let K, K̃ ∈ κ be two formal contexts on G and let
Pr, P̃r ∈ P be two probability measures on G . If there exists a bijective and
bimeasureable function i : G → G such that the extents are preserved (i.e. E
extent w.r.t. K ⇔ i(E ) extent w.r.t. K̃) and the probability is also preserved
(i.e. Pr(E ) = P̃r(i(E ))), then

D(·,K,Pr) ∼= D(·, K̃, P̃r)

is true.
(P4) Maximality: Let K ∈ κ,Pr ∈ P. Assume there exists gall ∈ G such that for

every extent E of K we have that gall ∈ E . Then

D(gall ,K,Pr) = max
g∈G

D(g ,K,Pr)

holds.
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What does centrality mean in this context?

(P7ii) Quasiconcave: Let K ∈ κ and Pr ∈ P. If for all A ⊆ G and all g ∈ γK(A) \ A
we have

D(g ,K,Pr) ≥ inf
g̃∈A

D(g̃ ,K,Pr),

we call D quasiconcave.
(P12) Consistency : Let K ∈ κ and Pr ∈ P be a probability measure on G . Let Pr(n)

be the empirical probability measure of an iid sample g1, . . . , gn of G with
n ∈ N which is drawn based on Pr. Then,

sup
g∈G

| D(n)(g ,K) − D(g ,K,Pr) |→ 0 almost surely.
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What does centrality mean in this context?

Figure: This figure can be found in Blocher et.al. (2023b).
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Adaptation to Data Represented via FCA:

Concrete definition of depth functions using FCA
representation?
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Recall: Simplicial Depth

Definition
Let (Rd ,B) with d ∈ N be a measurable space and let FRd

be a set of probability measures such that (Rd ,B,Pr) defines
a probability space for each Pr ∈ FRd . Then the simplicial
depth5 is given by

D : Rd × FRd → [0, 1], (x ,Pr) 7→ Pr(x ∈ Sd [X1, . . . ,Xd+1])

with
X1, . . . ,Xd+1 independent and identically distributed
random variables from Pr, and
Sd [X1, . . . ,Xd+1] being the set of points that are lie in
the convex closure of {X1, . . . ,Xd+1}.

5see Liu (1990)
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Union-Free Generic Depth Function

Definition
The union–free generic family of implications, UK, for a formal context K consists
of implications A → B for which the following is true:

1 they are non–trivial (deleted implications of the form A → A),
2 they have a minimal premise and a maximal conclusion (deleted implications

of the form A → B if there exists Ã & A such that Ã → B or B̃ & B with
A → B̃), and

3 cannot be constructed by union from other implications (deleted implications
A → B if there is a family of implications (Ai → Bi)i∈I with Ai & A for all
i ∈ I and A = ∪iAi and B = ∪iBi is true.a

aCompare this definition to the term proper.

 This family is not always sufficient to describe the corresponding closure system
(e.g. H = {A ⊆ N | #A < ∞} ∪ N)
 Is the union-free generic family of implications always unique?
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Union-Free Generic Depth Function

Definition
Let

G be a set.
κG be a set of formal contexts with object set G . Moreover, for all K ∈ κG
there exists a unique set of union-free generic premises UK that completely
describes the corresponding closure operator.
γK be the closure operator on G corresponding to K.
PG gives a set of probability measures on G .

Then the union-free generic depth is defined as

D : G × κG × PG → R≥0,
(g ,K,P) 7→

∑∞
j=1

1
Cj

P(g ∈ γK(X j) | X j ∈ UK)

with X j = {X1, . . . ,Xj} where X1, . . . ,Xj ∼ P. Moreover, Cj ∈ ]0,∞[ for all
j ∈ N. We set

∑
∅ = 0 and P(A | B) = 0 for P(B) = 0.
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Recall: Formal Context and Resulting Closure System on
Partial Orders

Definition
Let P be the set of posets on M. We define the mapping

γ:
2P → 2P

P 7→

{
p ∈ P |

⋂
p̃∈P

p̃ ⊆ p ⊆
⋃

p̃∈P
p̃

}
.
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Example: Partial Orders

Definition
Let M be the set of probability measures on P equipped with 2P as σ-field. The
union-free generic (ufg for short) depth on posets6 is given by

D:
P × M → [0, 1]

(p, ν) 7→

{
0, if for all S ∈ UFG :

∏
p̃∈S ν({p̃}) = 0

c
∑

S∈UFG:p∈γ(S)
∏

p̃∈S ν ({p̃}) , else

with c =
(∑

S∈UFG
∏

p̃∈S νn ({p̃})
)−1

.

6see Blocher et.al. (2023a,c)
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Example: Partial Orders

Comparison of Machine Learning Algorithms7

Data Sets: 80 classification problems from OpenML.
ML Algorithms: Random Forests (RF), Decision Tree (CART), Logistic
regression (LR), L1-penalized logistic regression (Lasso) and k-nearest
neighbours(KNN).
Performance Measures: area under the curve, F-score, predictive accuracy
and Brier score.

⇒ We obtain 80 posets

7see Blocher et.al. (2023a,c)
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Example: Partial Orders

Figure: OpenML based on all four performance measures: Poset with maximal depth
based on all possible posets is plotted on the left. The poset with minimal ufg depth
restricted to the observed one can be seen in the middle. The poset on the right denotes
the poset with minimal depth value based on all possible posets.8

8see Blocher et.al. (2023c)
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Adaptation to Data Represented via FCA:

And what about inference?
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Two sample test
Here, we compare the depth function evaluated based on two different (empirical)
distributions: One is F and the other G .

Figure: This figure can be found in Li et.al. (2004).
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Open Questions and Discussion
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Open Questions and Discussion

What are the conditions on a formal context such that the union-free generic
family of implications is unique and sufficient to describe the corresponding
closure operator?
How to handle the difference between duplications due to sampling and
duplications due to attributes of a formal context?
How to define a one-sample test or regression?
...
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