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Introduction

• Aim: Rank optimization algorithms on
benchmark suites with regard to multiple
criteria (giving rise to incomparibility) [4]
– Multi-objective optimization [7, 3]
– Single-objective optimizers evaluated

w.r.t. several metrics [6]
• Problem: Impossible to aggregate a set of

total orders to a single total order1 [1]
• Common solution is to use “highly subjec-

tive” [5] consensus/weighting methods
• Our proposal: Consider partial orderings

of optimizers on single test function
• Instead of aggregating, describe their dis-

tribution by depth functions → how cen-
tral/outlying are the orderings?

Applications

Multi-Objective Evolutionary Algorithms
We compare DVC [7] against 6 competitors on 13 test functions w.r.t.
mean inverted generational distance at four different phases (4 criteria).
This results in 13 (unique) posets describing the relation between the
optimizers’ 4 performance criteria on each of the 13 test functions.

Figure: Orderings of optimizers corresponding to highest (0.39, left) and
lowest (0.17, right) ufg depth. Edge between optimizers: The optimizer
on top is not outperformed by the one below w.r.t. any of the 4 criteria.

DeepOBS [6]: Deep Learning Optimizers
We mimic the setup in [6, section 4] and compare vanilla stochastic gradi-
ent descent (SGD), adam, and momentum on 8 test functions with respect
to performance (minimal test loss achieved in a fixed time budget) and
speed (time required to achieve a given test loss). .

Figure: Orderings of optimizers corresponding to highest (0.65, left, du-
plicated) and lowest (0.29, right) ufg depth are shown below. The poset on
the right can be seen as outlying. This means that the underlying problem
(LSTM on War and Peace) produces an order structure that is atypical

Outlook

Design and Curation of Benchmarking Suites:
• Looks at the entire benchmarking suite

(test function, evaluation criteria and the
optimizers) at once

• Sensible tool to asses the diversity of the
test function and produced partial orders

Limitations - Inferential Statements:
• “Which test functions produce more likely

a typical partial ordering of the old and
new optimizers combined, and which pro-
duce an atypical order?”
→ with no prior knowledge, this question
cannot be answered (by any ranking)  

• “On another test function, what is the
most likely poset structure to be ob-
served?” → further research needed

Method: Adapt the Simplicial Depth to Partially Ordered Sets (Posets) [2]

Define the Closure Operatur/System Reduce the Input Set (It is still sufficient to describe the closure operator) Define the Depth Function
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S = {P ⊆ P | Condition (C1) and (C2) hold }

with (C1) : P ( γ(P ),
(C2) : @ (Ai)i∈{1,...,`} ∀i ∈ {1, . . . , `} : Ai ( P and ∪i∈{1,...,`} γ(Ai) = γ(P ).
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∣∣∣∣ x =
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i=1 λiai with ai ∈ A,
λi ∈ [0, 1],
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} S = {{x1, . . . , xd+1} ⊆ R}
D : Rd ×M→ [0, 1],

(x, ν) 7→ ν(x ∈ γRd{X1, . . . , Xd+1}),

with X1, . . . Xd+1 ∼ ν.
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