Hannah Blocher, Georg Schollmeyer and Christoph Jansen Ludwig-Maximilians-Universität München

Statistical Models for Partial Orders based on Data Depth and Formal Concept Analysis

IPMU 2022

30.03.2022 1 / 24

< □ > < 同 > < 回 > < Ξ > < Ξ

Motivation

In the most approaches

- incompleteness of a partial order stems form missing knowledge/data,
 - e.g. an unresolved conflict in values or goals (e.g. Stewart 2020).
- $\rightarrow\,$ an explicit missing mechanism is assumed and included in the model (e.g. by the distance measure used)

In what follows

• an observed **incomparability** is understood as a **precise observation** and we consider a depth function instead of a distance measure.

This distinction is to be represented in the construction of the stochastic model via the set of partial order.

Thus, we consider the statistical model

$$P(X = x) = C_{\lambda} \cdot \Gamma \left(\lambda \cdot (1 - D^{\mu}(x))\right)$$

with

- C_{λ} normalizing constant,
- **2** $\Gamma : \mathbb{R}_{>0} \longrightarrow \mathbb{R}_{>0}$ (weakly decreasing) decay function,
- **(**) $\mu \in \mathcal{P}$ location parameter and $\lambda \in \mathbb{R}_{>0}$ a scale parameter and
- D^{μ} a depth function that is maximal at partial order μ .

< □ > < 同 > < 回 > < Ξ > < Ξ

Overview

30.03.2022 4 / 24

Content

Formal Concept Analysis

- (i) Introduction to Formal Concept Analysis
- (ii) Introduction to Depth Functions
- (iii) Definition of Unimodality
- Application on the Set of Partial Orders
 - (i) Formal Context
 - (ii) Depth Function
 - (iii) Sampling

イロト イボト イヨト イヨ

Formal Concept Analysis

Representation of a data set as cross table

		a	b	c	d	e	f	g	h	i
1	Leech	×	×					×		
2	Bream	×	×					×	×	
3	Frog	×	×	×				×	×	
4	Dog	×		×				×	×	×
5	Spike – weed	×	×		×		×			
6	Reed	×	×	×	×		×			
7	Bean	×		×	×	×				
8	Maize	×		×	×		×			

Figure 1.1 Context of an educational film "Living Beings and Water". The attributes are: a: needs water to live, b: lives in water, c: lives on land, d: needs chlorophyll to produce food, e: two seed leaves, f: one seed leaf, g: can move around, h: has limbs, i: suckles its offspring.

Graphic is taken from Ganter and Wille 2012, p.18

Convert a non-binary attribute into a set of binary attributes by using

 $t: V \rightarrow 2^{M_{new}}$

where V is the set of non-binary values and M_{new} is the set of binary attributes. Note that the binary relation \tilde{I} (given by the crosses) must also be adjusted accordingly.

< □ > < 同 > < 回 > < Ξ > < Ξ

Convert a non-binary attribute into a set of binary attributes by using

 $t: V \rightarrow 2^{M_{new}}$

where V is the set of non-binary values and M_{new} is the set of binary attributes. Note that the binary relation \tilde{I} (given by the crosses) must also be adjusted accordingly.

For example: Let $g_1, \ldots, g_n \in \mathbb{R}^d, d \in \mathbb{N}$ be observations. Then a possible scaling method is $t : \mathbb{R}^d \to 2^{\{ \text{ set of all half-spaces} \}}, x \mapsto \{H \mid H \text{ half-space in } \mathbb{R}^d \}$ and we say $(g_j, H) \in \tilde{I}$ iff g_j lies in half-space H.

イロト 不得 トイヨト イヨト 二日

Formal Concept Analysis: Formal Context and Deviation Operators

Definition

A formal context is given by a triple $\mathbb{K} = (G, M, I)$. *G* is the set of **objects**, *M* is the set of **attributes** and *I* defines a binary relation between *G* and *M*.

(日) (四) (日) (日) (日)

Formal Concept Analysis: Formal Context and Deviation Operators

Definition

A formal context is given by a triple $\mathbb{K} = (G, M, I)$. *G* is the set of **objects**, *M* is the set of **attributes** and *I* defines a binary relation between *G* and *M*.

The derivation operators

$$\psi: 2^{G} \to 2^{M}, A \mapsto A' := \{ m \in M \mid \forall g \in A: glm \},\\ \varphi: 2^{M} \to 2^{G}, B \mapsto B' := \{ g \in G \mid \forall m \in B: glm \}$$

give us the closure operator

$$\psi \circ \varphi : 2^{\mathsf{G}} \to 2^{\mathsf{G}}, \mathsf{A} \mapsto \mathsf{A}''.$$

(日) (四) (日) (日) (日)

This gives us

• the closure system $\{A'' \mid A \subseteq G\}$ on G which describes the formal context and

• a family of implications which describes the closure system completely. Let $A, B \subseteq G$. We say premise A implies conclusion B iff

 $\psi \circ \varphi(A) \supseteq \psi \circ \varphi(B).$

Image: A math a math

Formal Concept Analysis: Closure System and Implications

This gives us

- the closure system ${A'' | A \subseteq G}$ on G which describes the formal context and
- a family of implications which describes the closure system completely. Let A, B ⊆ G. We say premise A implies conclusion B iff

 $\psi \circ \varphi(A) \supseteq \psi \circ \varphi(B).$

Image: A matrix and a matrix

This gives us

- the closure system $\{A'' \mid A \subseteq G\}$ on G which describes the formal context and
- a family of implications which describes the closure system completely. Let A, B ⊆ G. We say premise A implies conclusion B iff

$$\psi \circ \varphi(A) \supseteq \psi \circ \varphi(B).$$

イロト イヨト イヨト イヨト

Formal Concept Analysis: Closure System and Implications

This gives us

- On G which describes the formal context and
- **②** a **family of implications** which describes the closure system completely. Let $A, B \subseteq G$. We say premise A implies conclusion B iff

$$\psi \circ \varphi(A) \supseteq \psi \circ \varphi(B).$$

Summary:

Data Set $\xrightarrow{\text{scaling}}$ Formal Context $\longleftrightarrow^{\varphi,\psi}$ Closure System $\xleftarrow{\varphi,\psi}$ Family of Implications

For further readings we refer to Ganter and Wille 2012

H. Blocher, G. Schollmeyer, C. Jansen

Image: A math a math

Overview

Measures **centrality** and **outlingless** of a data point with respect to a data cloud or an underlying distribution

¹https://de.wikipedia.org/wiki/Box-Plot (visited: 20.10.21)

²https://link.springer.com/article/10.1007/s10994-015-5524-x (visited: 20.10.21) ³https://en.wikipedia.org/wiki/Simplicial_depth (visited: 20.10.21)

H. Blocher, G. Schollmeyer, C. Jansen

Measures **centrality** and **outlingless** of a data point with respect to a data cloud or an underlying distribution

H. Blocher, G. Schollmeyer, C. Jansen

¹https://de.wikipedia.org/wiki/Box-Plot (visited: 20.10.21)

²https://link.springer.com/article/10.1007/s10994-015-5524-x (visited: 20.10.21) ³https://en.wikipedia.org/wiki/Simplicial_depth (visited: 20.10.21)

- Affine Invariance
- Monotonicity Relative to the Deepest Point, Quasi–Concavity, ... (Unimodality)
- Vanishing at Infinity
- Computability

 $^{^{3}}$ For further readings, we refer to Zou and Serfling 2000 and Chen et al. 2015 (\equiv) \equiv 0 9.0

- The depth function based on a formal context has as input the set of objects and is defined as $f: G \to \mathbb{R}_{\geq 0}$.
- Approach to obtain a depth function: Use the different representations of a data set given by FCA and define the statistical depth function based on this representation.
- Transfer the properties of \mathbb{R}^d for statistical depth functions to general depth functions defined by a formal context. Here, we restrict to **unimodality** property.

<ロト < 同ト < ヨト < ヨ)

Unimodality in the context of Formal Concept Analysis

A function respects the structure of the family of implications given by a formal context.

Definition

Let $\mathbb{K} = (G, M, I)$ be a formal context and let $f : H \longrightarrow \mathbb{R}_{\geq 0}$ with $H \subseteq G$ be a (depth, probability) function.

Then f is called **unimodal** if for every finite set of objects $\{g_1, \ldots, g_n\} \subseteq H$ with $\{g_1, \ldots, g_{n-1}\}$ implying g_n we have

$$f(g_n) \geq \min\{f(g_1), \dots f(g_{n-1})\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Overview

For now on, let \mathcal{P} be the set of all partial orders on $\mathcal{X} = \{x_1, \ldots, x_n\}$ with $n \in \mathbb{N}$.

The formal context
$$\mathbb{K}$$
 is given by
• $G = \mathcal{P}$
• $M = \underbrace{\{"x_i \le x_j" \mid i, j = 1, \dots, n, i \ne j\}}_{=:M_{\leq}} \cup \underbrace{\{"x_i \le x_j" \mid i, j = 1, \dots, n, i \ne j\}}_{:=M_{\leq}}$

This corresponds to the closure operator which maps each subset $\{g_1,\ldots,g_m\}\subseteq \mathcal{P}=G,\ m\in\mathbb{N}$ to

$$\{g \in \mathcal{P} \mid \cap_{i=1}^m g_i \subseteq g \subseteq \cup_{i=1}^m g_i\}.$$

< D > < P > < P > < P >

Application on the Set of Partial Orders: Formal Context

Let $\mathcal{X} = \{A, B, C\}$. Consider the set {po1, po2} and its implications.

We obtain

2 {po1, po2} does not imply {po4}.

Image: A matrix and a matrix

Definition

Let $\mathbb{K} = (G, M, I)$ be a formal context, then the **generalized localized Tukey's depth** function (see Schollmeyer 2017) is given by

$$\mathscr{T}^{\mu}(g) \coloneqq 1 - rac{\displaystyle\max_{m \in M \setminus \Psi(\{g\}),} |\Phi(\{m\})|}{\displaystyle \mu l m}.$$

		m	m²	mg	my	N5	m6	m ₇	mg	m٩	mad	MAA
μ	≈ 31	\times		×	\times	×		×	\times		×	
	3r		×		\times		×					
	93	*	×		\times	×						
	ઉ્	\times			\times			X				
	35	\star						\times		×		X

(日) (四) (日) (日) (日)

Definition

Let $\mathbb{K} = (G, M, I)$ be a formal context, then the **generalized localized Tukey's depth** function (see Schollmeyer 2017) is given by

$$\mathscr{T}^{\mu}(g) \coloneqq 1 - rac{\displaystyle\max_{m \in \mathcal{M} \setminus \Psi(\{g\}),} |\Phi(\{m\})|}{|G|}.$$

		m	m²	mg	my	N5	m6	m ₇	mg	m٩	mad	MAA
μ	= 31	×		×	\times	×		×	×		×	
	32		×		\times		×					
	93	*	×		\times	×						
	ઉ્	×			\times			×				
	95	*						\times		×		X

(日) (四) (日) (日) (日)

Definition

Let $\mathbb{K} = (G, M, I)$ be a formal context, then the **generalized localized Tukey's depth** function (see Schollmeyer 2017) is given by

$$\mathscr{T}^{\mu}(g) \coloneqq 1 - rac{\displaystyle\max_{\substack{m \in M \setminus \Psi(\{g\}), \ \mu \mid m}} |\Phi(\{m\})|}{|G|}.$$

For the formal context with $G = \mathcal{P}$ and $M = M_{\leq} \cup M_{\not\leq}$ we get

$$\mathscr{T}^{\mu}(g) = 1 - \max \left\{ \max_{(p,q) \in \mu \setminus g} lpha_{p,q}, \max_{(p,q) \in g \setminus \mu} eta_{p,q}
ight\} \text{ with } lpha_{p,q}, eta_{p,q} \in [0,1],$$

 \rightarrow Note that $\alpha_{p,q}$ and $\beta_{p,q}$ are constant and not dependend of p or q.

< □ > < □ > < □ > < □ > < □ >

Regarding reweighted version of $\alpha_{p,q}$ and $\beta_{p,q}$:

•
$$\alpha_{p,q} \propto |\{r \in \mathcal{X} \mid p \leq_{\mu} r \leq_{\mu} q\}|$$

•
$$\beta_{p,q} \propto |\{r \in \mathcal{X} \mid p \wedge_{\mu} q \leq_{\mu} r \leq_{\mu} p \vee_{\mu} q\}| - 1$$

(日) (四) (日) (日) (日)

Overview

the statistical model

$$P(X = x) = C_{\lambda} \cdot \Gamma \left(\lambda \cdot (1 - D^{\mu}(x)) \right)$$

with

- C_{λ} normalizing constant,
- **2** $\Gamma : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}_{\geq 0}$ (weakly decreasing) decay function,
- **③** $\mu \in \mathcal{P}$ location parameter and $\lambda \in \mathbb{R}_{>0}$ a scale parameter and
- D^{μ} a depth function that is maximal at partial order μ .

(日) (四) (日) (日) (日)

Acceptance-Rejection Method:

• Step 1: Draw systematically a partial order

$$P_{algo_select}(g) = |lext(g)| \cdot 2^{|g| - |reduc(g)|} \cdot \left(n! 2^{n(n-1)/2}
ight)^{-1}$$

• Step 2: Compute the acceptance probability

$$acc(g) = f(g) \cdot \left(P_{algo_select}(g) \cdot n! 2^{n(n-1)/2} \right)^{-1}$$

• Step 3: Sample uniformly a value between [0, 1] and if its lower than acc(g) accept the partial order given in Step 1.

• • • • • • • • • • • •

Overview

- How to estimate a statistical model from a sample?
- Inference?
- $\bullet\,$ How to deal with non-transitive or/and cyclic observations? How to deal with NA's?

イロト イ団ト イヨト イヨト

References

Chen, B. et al. (2015). "Half-space mass: a maximally robust and efficient
data depth method.". In: Mach Learn 100, pp. 677–699.
Dittrich, R., R. Hatzinger, and W. Katzenbeisser (1998). "Modelling the
Effect of Subject-Specific Covariates in Paired Comparison Studies With an
Application to University Rankings". In: Journal of the Royal Statistical
Society. Series C (Applied Statistics) 47 (4), pp. 511–525.
Ganter, B. (2011). "Random Extents and Random Closure Systems". In:
Concept Lattices and their Applications 959, pp. 309–318.
Ganter, B. and R. Wille (2012). Formal Concept Analysis: Mathematical
Foundations. Springer Berlin Heidelberg.
Schollmeyer, G. (2017). "Lower Quantiles for Complete Lattices.". In:
Technical Report 207. Department of Statistics. LMU Munich.
Stewart, R. (2020). "Weak pseudo-rationalizability". In: Mathematical Social
<i>Sciences</i> 104, pp. 23–28.
Zou, Y. and R. Serfling (2000). "General Notions of Statistical Depth
 Functions". In: Annals of Statistics 28, pp. 461–482.

2

メロト メロト メヨト メヨト