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The Effect of Exchange Rates on Statistical Decisions

Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane

Statistical decision theory, whether based on Bayesian principles or other concepts such as
minimax or admissibility, relies on the idea of minimizing expected loss or maximizing ex-
pected utility. Loss and utility functions are generally treated as unitless numerical measures
of how costly or valuable are the various consequences of potential decisions. In this paper, we
address directly the issue of the units in which loss and utility are settled and the implications
that those units have on the rankings of potential decisions. The simplest example is to imagine
that the loss will be paid in units of some currency. If there are multiple currencies available
for paying the loss, one must take explicit account of which currency is used as well as the
exchange rates between the various available currencies.

1. INTRODUCTION

Statistical decision theory is generally based on minimizing a loss function or maximizing a
utility function, whether that basis stems from an axiomatic foundation or is merely posited as
a principle. The corresponding loss function or the utility function is generally assumed to be
unitless. In the various axiomatic derivations of expected utility theory (see, e.g., Anscombe and
Aumann 1963; Savage 1954) a unitless utility is derived, but its argument list includes explicit
prizes or consequences of decision making which have value to the decision maker. For exam-
ple, the prizes might include changes in a decision maker’s bank balances in various currencies,
changes to a decision maker’s reputation, etc. In minimax theory and the theory of admissibility,
the units in which the loss function is measured are generally unstated or assumed to be equivalent
to pure numbers. Here is a typical example.

Example 1. Let Ω = {1, 2} be the set of possible states of nature. Let E = {a, b} be the set of
possible decisions. Let L(ω, e) be a loss function given by the following table:

ω
1 2

e
a 0.5 2

b 1 1

The minimax decision in this problem would appear to be to choose e = b since the maximum loss
is 1 whereas the maximum loss for choosing e = a is 2.
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Now, suppose that the loss in the above problem is paid in a currency C1 while there is an
alternative currency C2 whose exchange rate with C1 is given by the following. In state ω = 1, one
unit of C2 is worth 0.5 units of C1. In state ω = 2, one unit of C2 is worth 2 units of C1. Suppose
that the minimax decision maker prefers to think in units of C2. The above loss function, converted
to units of C2, is

ω
1 2

e
a 1 1

b 2 0.5

The minimax decision is now e = a, even though the two loss functions charge equivalent values
under all circumstances.

A Bayesian who tries to use a prior distribution with Pr(ω = 1) = Pr(ω = 2) = 0.5 will make
the same choices as the minimax decision maker in both parts of this example. In the first part, the
expected losses for actions a and b are respectively 1.25 and 1. In the second part, they are 1 and
1.25.

The seemingly inconsistent decisions in Example 1 arise from a failure to account for the
varying values of one unit of loss from state to state. The minimax theory explicitly treats one unit
of loss as being equally important in every state. But the state-dependent exchange rate makes it
clear that one unit of loss can’t be equally valuable in both states for both parts of the example.
The minimax decision maker needs either to guarantee that one unit of loss means the same thing
in every state, or explicitly to take into account the varying value of one unit of loss. The minimax
theory does not have a way to do either of these at present. The theory of maximizing expected
utility has an explicit way to deal with the changing values of one unit of loss from state to state,
but the Bayesian in Example 1 has ignored what the theory requires.

Example 1 is a simplification of a decision problem in which some subtle issues were not
mentioned explicitly. None of these issues resolves the inconsistent decisions, but a thorough
analysis requires attention to them. First, in many applications, utility functions are not linear
in every currency. Hence, the relationship between exchange rate and utility needs more careful
analysis. We address this explicitly in Section 4. Second, the units for a loss function in a typical
statistical decision problem are generally unspecified. Utility functions are pure (unitless) numbers.
The theory of maximizing expected utility takes explicit account of the conversion from currencies
and commodities of value into pure utility values. This paper focuses on the state-dependent
relative values between various currencies and commodities to which attention must be paid in
order to avoid inconsistencies like those displayed in Example 1. If minimax decision makers are
going to be able to deal with unitless representation of state-dependent relative values, they too
need to take explicit account of how the relative values of things change from state-to-state.

This paper deals with how the theory of expected utility maximization directs the Bayesian to
deal with values that change from state to state. Section 2 describes the general expected utility
theory that deals with state-dependent values. In particular, there is no unique subjective proba-
bility that the Bayesian can use in all decision problems without regard to how losses are paid.
Section 3 gives a general definition of currency that helps facilitate the use and understanding of
state-dependent utility. Section 5 gives conditions under which the same decision will be made
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regardless of which currency is used for paying the loss. In Section 6, we consider the special de-
cision problem in which an agent is asked to provide a subjective expected value for some random
variable. This is the area in which the state-dependent theory has its most striking consequences.
The idea that one can elicit a subjective probability needs to be tempered by the realization that
the elicited probability is just one of many that form part of a state-dependent expected utility
representation of preference.

2. STATE-DEPENDENT UTILITY

Let Ω be a set of states of nature, that is, any partition of the sure event. In a typical mathemat-
ical presentation, Ω would have a σ-field A of subsets. Measurable real-valued functions defined
on Ω are called random variables. Elements of A are called events, and we allow ourselves the
convention of denoting the indicator function of an event A by the name of the event itself. If P
is a probability on (Ω,A) and X is random variable, we will allow ourselves the convention of
letting P (X) stand for the expected value of X under P ,

∫
Ω
X(ω)dP (ω).

Let R be a set of fortunes for a decision maker with σ-field B of subsets. A von Neuman-
Morgenstern lottery (NM lottery) L is a stipulated probability distribution (auxiliary randomiza-
tion) over the set R. Let H be a set of functions from Ω to the NM lotteries. (See VonNeumann
and Morgenstern 1947 for a discussion of how NM lotteries figure in the axiomatic derivation of
decision theory.) An element H of H is called a horse lottery, following Anscombe and Aumann
(1963). There is one special element of R that we will call status quo. It stands for the current
fortune of a decision maker at the point when he/she is being asked to make the next decision. We
assume that, in every state ω there is some fortune better than status quo and some fortune worse
than status quo.

Anscombe and Aumann (1963) prove that an agent’s preferences amongst simple horse lotter-
ies satisfy some seemingly innocuous conditions if and only if they can be represented by a unique
probability/utility pair. That is, the conditions hold if and only if there is a unique probability P
and a unique utility, a bounded function U : R → IR, with the following property. The agent
prefers H2 to H1 if and only if

P [U(H1)] < P [U(H2)]. (1)

When L is a NM lottery, the meaning of U(L) is
∫
R U(v)dL(v). Savage (1954) gives an alternative

derivation of an expected-utility representation of preference. See Fisburn (1970) for an overview
of several derivations of expected utility theory.

One of the seemingly innocuous conditions of Anscombe and Aumann (1963) implies that,
almost surely, the relative values of fortunes remain the same as the state of nature changes (state-
independence). This condition is violated when the fortunes involve different currencies whose
values can vary from state to state with positive probability. Without that state-independence con-
dition, the uniqueness of the probability/utility representation is lost, and the utility function must
be a more general object of the form to be defined in Definition 1.

Example 2. Let Ω = {1, 2}. Suppose that $1 is worth C= 0.75 in state 1 and is worth C= 0.65 in
state 2. Suppose now that an expected state-independent utility representation for preference, as in
(1), gives each state probability 0.5. Then $1 is worth

0.5× C= 0.75 + 0.5× C= 0.65 = C= 0.7
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marginally, and a state-independent expected utility representation of preference would assign the
same utility, say x, to C= 0.7 and $1 if both were available. Also, such a state-independent utility
representation would assign expected utility x to the horse lottery H that gives $1 in state 1 and
C= 0.7 in state 2. But this is unsatisfactory since H is the same as $1 in state 1 and H is strictly more
valuable than $1 in state 2, which has positive probability.

State-independent utility representations such as (1) are simply not capable of representing prefer-
ences when the relative values of fortunes vary from state to state. Hence, we introduce the usual
generalization to handle such cases. (See Rubin 1987 for one derivation.)

Definition 1. (State-Dependent Utility) Let P be a collection of mutually absolutely continu-
ous probabilities on Ω. Suppose that, for each P ∈ P , there is a utility function UP : Ω×R → IR
with the following properties.

• For all P ,
P [sup

v
|UP (·, v)|] <∞ (2)

• For every P1, P2 ∈ P ,

UP2(ω, v) = c1,2UP1(ω, v)
dP1

dP2

(ω) + t1,2(ω), a.s., (3)

where c1,2 > 0 is a scalar that can depend on P1 and P2, but on nothing else, t1,2 is some P2-
integrable function of ω, and dP1/dP2 is the Radon-Nikodym derivative of P1 with respect
to P2.

The collection {(P,UP ) : P ∈ P} is called a state-dependent expected utility representation
of preference over H. We say that a horse-lottery H has state-independent values under UP if
UP (ω,H(ω)) is constant as a function of ω.

Example 3. Every state-independent expected utility representation of preference extends in a
simple fashion to a state-dependent utility. Let P be a probability and let U be a bounded function
such that the agent prefers H2 to H1 if and only if (1). Let P consist of all probabilities that are
mutually absolutely continuous with respect to P . For each Q ∈ P , define

UQ(ω, v) = U(v)
dP

dQ
(ω).

It is straightforward to see that {(Q,UQ) : Q ∈ P} satisfies Definition 1 with c1,2 = 1 and
t1,2(·) ≡ 0.

Throughout this paper, we assume that P is as large as possible in the following sense. If P1 ∈ P
and P2 is mutually absolutely continuous with P1, then P2 ∈ P . This causes no loss of generality
because UP2 is easily constructed from (3). We will also suppress the “almost surely” qualification
in equations and formulas that involve Radon-Nikodym derivatives, since all probabilities in P
have the same zero-probability sets.

Condition (2) in Definition 1 is the state-dependent analog of the requirement that a utility is
a bounded function. Even if some UP are bounded, the conversion equation (3) allows other UP
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to be unbounded. Because each utility can be multiplied by a positive constant without changing
the representation of preference, (2) means that all expected utilities can be bounded by a com-
mon bound. Technically, the condition that utilities are bounded arises as a consequence of such
derivations as Savage (1954). If one skips the derivation of expected utility and simply adopts a
probability/utility pair (P,U) as in Example 3, one need not assume that U is bounded, so long
as one can guarantee that the expected utilities of all horse lotteries are finite. This would require
restrictions on the setH of horse lotteries.

Example 4. In Example 3, assume that the utility U is unbounded above. For each n, let vn be a
fortune such that U(vn) > 2n. If L0 is the NM lottery that assigns fortune vn with probability 2−n,
then U(L0) = ∞. If P [H = L0] > 0, then P [U(H)] will either be infinite or undefined. Clearly,
we cannot allow elements ofH to assume NM lotteries like L0. For infinite spaces, we need further
restrictions onH. Assume that there are disjoint subsets {An}∞n=1 of Ω such that P (An) = an > 0
for all n. For each n, let wn be a fortune such that U(wn) > 1/an. Let H0 =

∑∞
n=1Anwn. That

is, for each n and each ω ∈ An, H0(ω) = wn. Then P [U(H0)] >
∑m

n=1 U(wn)an > m for every
natural number m. Hence P [U(H0)] = ∞. In order for P [U(H)] < ∞ for all H ∈ H, we must
prevent H0 and all similar horse lotteries from being inH. One way to do that would be to restrict
H to contain only simple horse lotteries, namely, those that assume only finitely many NM lotteries
each of which has finite utility, as in Anscombe and Aumann (1963).

Rather than impose the types of restrictions discussed in Example 4, we assume (2). Seidenfeld,
Schervish, and Kadane (2009) discusses other problems that arise when utilities are unbounded.

One important consequence of (3) is the following. Let H1, H2 be elements of H. Then, for
every P1, P2 ∈ P ,∫

Ω

UP1(ω,H1(ω))dP1(ω) <

∫
Ω

UP1(ω,H2(ω))dP1(ω), if and only if∫
Ω

UP2(ω,H1(ω))dP2(ω) <

∫
Ω

UP2(ω,H2(ω))dP2(ω). (4)

That is, every probability/utility pair (P,UP ) ranks all horse lotteries the same as every other such
pair.

It is easy to see that one can add an arbitrary integrable function of ω to a utility and/or multiply
a utility by a positive constant without changing how the utility ranks horse lotteries. We will make
a standardization of all utility functions so that UP (ω, status quo) = 0 for all ω and all P . Hence,
status quo has the state-independent value 0 under all utilities. In (3), this makes t1,2 identically 0
for all P1 and P2.

The scalar factor c1,2 in (3) is an inconvenience that we can do without if we scale all utilities
in a standard way. There are uncountably many ways that we could scale. The most convenient
way is to pick a single P0 and force UP = UP0 × (dP0/dP ) for all other P ∈ P . No matter
which P0 we choose for this purpose, we get c1,2 = 1 in (3) for all P1 and P2. Also, we still have
UP (ω, status quo) = 0 for all P .

With the standardizations above, we see that, for all v ∈ R, (3) gives

UP2(ω, v) = UP1(ω, v)
dP1

dP2

(ω), (5)
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for all P1 and P2. In particular for each ω and v, the sign of UP (ω, v) is the same for all P . Also,
for every horse lottery H and all P1, P2 ∈ P ,∫

Ω

UP1(ω,H(ω))dP1(ω) =

∫
Ω

UP2(ω,H(ω))dP2(ω). (6)

This is a more convenient (and seemingly stronger) form of (4).
We make heavy use of a special kind of horse lottery in the rest of this paper.

Definition 2. (Numeraire) A numeraire is any horse lottery H such that UP (ω,H(ω)) has the
same sign (not 0) for all P and all ω. If that sign is positive, the numeraire is called positive, and if
the sign is negative, the numeraire is called negative. The marginal value of a numeraire H is the
number

cH =

∫
Ω

UP (ω,H(ω))dP (ω), (7)

which is the same for all P according to (6).

The name numeraire is commonly used in finance to refer to a currency that counts as a unit for
various calculations. In Section 3.2, numeraires will provide a convenient stand-in for currency
values when utilities are nonlinear.

Lemma 1. Let H be a numeraire. Then there is a unique probability/utility pair (Q,UQ) such
that H has state-independent value cH under UQ.

Proof. Let (P,UP ) be a probability/utility pair. Let Q be the probability with dQ/dP =
UP (·, H)/cH . It follows from (5) that UQ(ω,H(ω)) = cH for all ω, and H has state-independent
values under UQ. If (Q′, UQ′) is another probability/utility pair for which H has state-independent
values, then dQ/dQ′ is constant by (5) and that constant must be 1. So Q = Q′ and UQ = UQ′ . �

Definition 3. For each numeraireH we refer to the pair (Q,UQ) such thatH has state-independent
values under UQ as the probability and utility corresponding to H .

Although each numeraire has state-independent values under one and only one utility, each
utility may have several numeraires that all have state-independent values. For example, if $1 has
state-independent values under a utility, and if that utility is linear in dollar values, then $2 will
have state independent values as well. With a general utility, if H has state-independent values and
0 < α < 1, then the numeraire that gives, in each state ω, H(ω) with probability α and status quo
with probability 1− α also has state-independent values.

Lemma 1 gives some insight into how to fix the decision making in Example 1.

Example 5. Reconsider Example 1. One unit of currency C1 is a numeraire as is one unit
of C2. They do not have the same corresponding probability/utility pairs, however. A Bayesian
who uses Pr(ω = 1) = Pr(ω = 2) = 0.5 with one of the two currencies cannot use that same
probability with the other currency. The theory does not allow it. Once we introduce general
currencies and exchange rates, we can be more specific about the probabilities that correspond to
the two currencies in this example.

The minimax decision maker in Example 1 behaves as if the numeraire has state-independent
values in both parts of the example, but that is impossible. If one of the numeraires has state-
independent values, the other does not. A minimax decision maker needs some way to figure out
which numeraire, if either, has state-independent values.
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Next, we turn to the general concept of currency and how it is related to utility in a state-
dependent utility representation of preference.

3. CURRENCY

We give a general definition of currencies so that we can make precise the dependence of
statistical decisions on currency.

Definition 4. A currency is a set C of horse lotteries in one-to-one correspondence with a
subset RC of the reals (AC : C ↔ RC) and which satisfies the following.

• RC contains 0.

• AC(H1) < AC(H2) if and only if, for every ω and every utility U and every H1, H2 ∈ C,
U(ω,H1(ω)) < U(ω,H2(ω)).

• A−1
C (0) is status quo.

Currencies are defined as changes relative to the status quo and in such a way that more is always
better. The reason for allowing RC to be a subset of the reals (rather than requiring it to be the
whole set of reals) is primarily the following. In order for utility to be bounded when utility is also
linear in currency, we need the set of currency values to be bounded. Definition 5 makes precise
what we mean to say that utility is linear in a currency.

Definition 5. We say that utility is linear in currency C if, for each P , there exists WP,C : Ω→
IR+ such that

UP (ω,A−1
C (x)) = WP,C(ω)x, (8)

for all ω and all x ∈ RC . Let C stand for the class of all currencies C such that utility is linear in
C.

Lemma 2, below, shows that (8) holds for a single P = P0 if and only if it holds for all P with

WP,C(ω) = WP0,C(ω)
dP0

dP
(ω). (9)

3.1 General Results

The first result merely says that currency values are numeraires, and its proof is straightforward.

Proposition 1. If C is a currency, then every element H of C except status quo is a numeraire
with sign equal to the sign of AC(H).

The next result is useful when we try to define exchange rates. It says that the state-dependent
relative values of two numeraires don’t depend on the particular probability/utility pair used to
represent preference.

Lemma 2. Let H1 and H2 be two numeraires. Then, UP (ω,H2(ω))/UP (ω,H1(ω)) is the same
for all P ∈ P .
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Proof. Let P1 and P2 be arbitrary probabilities in P . It follows from (5) that,

UP2(ω,H(ω))

UP1(ω,H(ω))
=
dP1

dP2

(ω), (10)

for each numeraire H and for all P1, P2, and ω. Hence, the ratio on the left side of (10) does not
depend on H . That is, for all P1, P2, H1, H2, and ω,

UP2(ω,H1(ω))

UP1(ω,H1(ω))
=
UP2(ω,H2(ω))

UP1(ω,H2(ω))
.

Rearranging terms gives
UP1(ω,H2(ω))

UP1(ω,H1(ω))
=
UP2(ω,H2(ω))

UP2(ω,H1(ω))
. � (11)

3.2 Utility Linear in Currency

The next result exhibits a useful relationship between values of a currency that has linear utility
values.

Lemma 3. Let C ∈ C, and for each x 6= 0, let HC,x = A−1
C (x), i.e., x units of currency C.

Then, the probability/utility pair (Px, UPx) corresponding to HC,x is the same for all x 6= 0, and
the state-independent value of x units of currency C is xcHC,1

.

Proof. Let x 6= 0. Because HC,x has state-independent values under UPx , WPx,C is constant.
Let P0 ∈ P . From (9) and (8), we see that Px must satisfy

dPx

dP0

=
WP0,C∫

Ω
WP0,C(ω)dP0

=
WP0,C

cHC,1

, (12)

which is the same for all x 6= 0. From (7), we get that the state independent value ofHC,x is xcHC,1
.

�
Suppose that the loss function L in a statistical decision problem will be paid as L(ω, q) units

of currency C when the agent chooses action q and ω is the state of nature. The agent wants to
choose q to maximize ∫

Ω

UP (ω,A−1
C (−L(ω, q)))dP (ω), (13)

for some P ∈ P (hence for all P ∈ P). If UP (ω, ·) is not linear in its second argument, maximizing
expected utility will bear no relationship to minimizing expected loss. For this reason, we would
like to deal only with currencies in C. Fortunately, there are many currencies in C. Lemma 4 shows
how to construct an element of C from each pair of positive and negative numeraires.

Lemma 4. Suppose that there exist both a positive numeraire and a negative numeraire. Then
there exist (possibly) other positive and negative numerairesH+ andH− and a currencyC such that
utility is linear in the values of C, bothH+ andH− have the same corresponding probability/utility
pairs, and that common probability/utility pair corresponds to every element of C.
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Proof. Let H ′− be a negative numeraire, and let H ′+ be a positive numeraire. For each probabil-
ity P ∈ P , let

mP (ω) = min{UP (ω,H ′+(ω)),−UP (ω,H ′−(ω))}, (14)

which is strictly positive for all ω. For each ω, let z(ω) = −mP (ω)/UP (ω,H ′−(ω)). It follows from
(5) that z(·) is the same for all P and that 0 < z(ω) ≤ 1. Define H−(ω) to be H ′−(ω) with proba-
bility z(ω) and status quo with probability 1−z(ω). Similarly, let w(ω) = mP (ω)/UP (ω,H ′+(ω)),
also the same for all P and 0 < w(ω) ≤ 1. Define H+(ω) to be H ′+(ω) with probability w(ω) and
status quo with probability 1− w(ω). By construction, we have

UP (ω,H+(ω)) = −UP (ω,H−(ω)) = mP (ω),

hence H+ and H− share a common corresponding probability/utility pair as seen from the proof
of Lemma 1.

For each −1 ≤ x ≤ 0, let Hx(ω) assign H−(ω) with probability −x and status quo with
probability 1 + x. For 0 < x ≤ 1, let Hx(ω) assign H+(ω) with probability x and status quo with
probability 1 − x. Define C = {Hx : −1 ≤ x ≤ 1}. First, note that AC(Hx) = x and RC [−1, 1]
satisfy Definition 4, so that C is a currency. Also, for −1 ≤ x ≤ 1,

UP (ω,A−1
C (x)) = UP (ω,Hx(ω)) = mP (ω)x,

for all P and all ω. Since mP (ω) > 0 for all P and all ω, WP,C(ω) = mP (ω) in Definition 5. The
final two claims follow from Lemma 3 and the facts that H− = A−1

C (−1) and H+ = A−1
C (1). �

The construction in the proof of Lemma 4 was first introduced by Smith (1961) who calls it an
adaptation from Savage (1954). Intuitively, the method of Smith (1961) is to replace x units of a
currency C ′ with an NM lottery that has probability proportional to |x| of receiving (or paying) a
fixed amount and stays in status quo otherwise. The utility of such an NM lottery is proportional
to x regardless of whether or not C ′ ∈ C. In this way, we need only evaluate the utility at a single
positive currency value and at a single negative currency value in C ′. Next, we show how to make
use of this idea in decision problems.

3.3 Paying Loss in a Currency

Consider a statistical decision problem with a set E of available actions and a bounded loss
function L : Ω × E → IR. That is, the decision maker’s fortune will change to −L(ω, q) if the
chosen action is q and the state of nature is ω. Here, q can be a very general action. For example,
q can be a function of random variables whose values will not be observed until some later time,
presumably before the loss gets paid. All that is required is that L(ω, q) is known in time for paying
the loss and that there is enough measurability to be able to compute expected values.

Suppose that we want the loss to be paid using a currency C ′. Rather than paying directly in
units of C ′, let H ′− and H ′+ be respectively negative and positive numeraires in C ′, and construct
the currency C in Lemma 4. Define x(ω, q) = −L(ω, q)/M , where M is an upper bound on the
loss function. If the agent chooses action q, change the agent’s fortune to x(ω, q) units of currency
C. The agent’s expected utility (13) becomes

− 1

M

∫
Ω

L(ω, q)WP,C(ω)dP (ω). (15)

We are now in position to state the following key result.
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Theorem 1. Suppose either that we construct a currency C as in Lemma 4 or that utility is
already linear in an existing currency C. Suppose also that a decision problem has a loss function
L(ω, q) that is bounded by 1. This means that the agent’s fortune moves to −L(ω, q) units of
currency C if the agent chooses action q and the state of nature is ω. Then the agent maximizes
expected utility by minimizing expected loss using the probability Q that corresponds to C.

Proof. If the currency C is constructed as in Lemma 4, let Q be the probability corresponding
to H−. Then for each P ∈ P , dQ/dP (ω) is a positive constant times WP,C(ω), and (15) is a
positive constant times

−
∫

Ω

L(ω, q)dQ(ω), (16)

which is maximized by minimizing expected loss under Q. If utility was already linear in some
currency C, then (13) is

−
∫

Ω

L(ω, q)WP,C(ω)dP (ω),

which is a positive constant multiple of (16). Hence, maximizing expected utility is the same as
minimizing expected loss under Q. �

If we contemplate different choices for the currency in which the loss is paid, the question
arises as to whether some currencies are better for a decision problem than others. We turn to that
question in Section 6.2. In order to choose between different currencies, we need a scale on which
to compare them. The natural comparison between currencies is their exchange rate, which we
consider in Section 4.

4. EXCHANGE RATES

An obvious problem with exchange rates in the presence of nonlinear utility, is the following.
Let C1 and C2 be currencies. Even if one unit of C2 is worth x units of C1 it doesn’t necessarily
follow that two units of C2 are worth 2x units of C1. Hence, the exchange rate is difficult to define
in a manner that matches how it is used in the foreign exchange market unless utility is linear in
both currencies. We begin the discussion of exchange rates by comparing two numeraires and then
extend to currencies in which utility is linear.

Definition 6. (Exchange Rates) Let H1 and H2 be numeraires. The conditional exchange rate
from H1 to H2 is the function EH1,H2 : Ω → IR equal to the ratio of their state-dependent values,
namely

EH1,H2(ω) =
UP (ω,H2(ω))

UP (ω,H1(ω))
, (17)

which is the same for all P according to Lemma 2. The marginal exchange rate from H1 to H2 is
the ratio of their marginal values MH1,H2 = cH2/cH1 .

One can think of the marginal exchange rate between two numeraires as their relative values
at the present time. In general, when the loss function in a decision problem will be paid at some
future time, the relative values of various numeraires might change between now and when the
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loss is paid. In our discussion of decision problems, we think of the conditional exchange rates
between numeraires as their future exchange rates at the time when the loss will be paid.

Notice that EH2,H1 = 1/EH1,H2 and MH2,H1 = 1/MH1,H2 . If H3 is a third numeraire, then
EH1,H3 = EH1,H2EH2,H3 and MH1,H3 = MH1,H2MH2,H3 , as one would expect of exchange rates.
Next, we present some natural relationships between conditional and marginal exchange rates.

Lemma 5. Let H1 and H2 be numeraires with corresponding probability/utility pairs (P1, UP1)
and (P2, UP2). Then

EH1,H2 =
dP2

dP1

MH1,H2 . (18)

Proof. Let (P,UP ) be a probability/utility pair. From the construction in the proof of Lemma 1,
we see that dPi/dP = UP (·, Hi)/cHi

for i = 1, 2. It follows that

dP2

dP1

=
dP2/dP

dP1/dP
=
UP (·, H2)cH1

UP (·, H1)cH2

=
EH1,H2

MH1,H2

,

hence (18) holds. �

Lemma 6. Under the conditions of Lemma 5, MH1,H2 = P1(EH1,H2).

Proof. From Lemma 5,

P1(EH1,H2) = P1

(
dP2

dP1

MH1,H2

)
= MH1,H2 . � (19)

In words, Lemma 6 says that the marginal exchange rate from H1 to H2 is the mean of the
conditional exchange rate with respect to the probability corresponding to the utility that gives H1

state-independent values.
The remaining results in this section concern the collection C of currencies such that utility is

linear in each of the currencies. In the notation of Lemma 3, the conditional exchange rate between
x units of two different currencies C1 and C2 in C is

EHC1,x
,HC2,x

(ω) =
UP (ω,HC2,x(ω))

UP (ω,HC1,x(ω))
=
WP,C2(ω)

WP,C1(ω)
, (20)

for all x 6= 0. That is, as long as we compare numeraires consisting of the same numerical amounts
x of currency, the conditional exchange rate does not depend on the common amount x. Lemma 2
shows that EHC1,x

,HC2,x
does not depend on P , which fact also follows quickly from (9). Use the

symbol EC1,C2(ω) to denote the conditional exchange rate in (20). Let MC1,C2 = cHC2,1
/cHC1,1

stand for the marginal exchange rate from C1 to C2.
In the linear case, exchange rates have interpretations much like what we see in foreign ex-

change. The marginal exchange rate MC1,C2 is the number of units of C1 that has the same value
as one unit of C2 at the present time. The conditional exchange rate has the same interpretation
state-by-state.

We are now in a position to see how the Bayesian in Example 1 can clear up the inconsistent
choices that were made.

11



Example 6. Reconsider Example 1. We have not yet given enough information to determine
the probabilities that correspond to each of the two currencies. But we know that they are not the
same. First suppose that P1({1}) = P1({2}) = 0.5 is the probability that corresponds to C1. Let
P2 be the probability that corresponds to C2. According to Lemma 5,

dP2

dP1

=
EC1,C2

MC1,C2

.

In Example 1, we specified EC1,C2(1) = 0.5 and EC1,C2(2) = 2. This makes MC1,C2 = 0.5×0.5 +
0.5× 2 = 1.25, and

dP2

dP1

(ω) =
1

1.25
×
{

0.5 if ω = 1,
2 if ω = 2.

=

{
0.4 if ω = 1,
1.6 if ω = 2.

So P2({1}) = 0.5× 0.4 = 0.2 and P2({2}) = 0.5× 1.6 = 0.8.
Using currency C1, the expected losses for actions a and b are as given in Example 1, namely

1.25 and 1 respectively, and the agent chooses b. Using currency C2, the expected loss for action
a is again 1, while the expected loss for action b is 2 × 0.2 + 0.5 × 0.8 = 0.8, and the agent still
chooses b, as expected.

For completeness, suppose next that the probability corresponding toC2 isQ2({1}) = Q2({2}) =
0.5, which happens to be the same as P1 above. Let Q1 be the probability corresponding to C1.
The conditional exchange rate that we need now is EC2,C1 = 1/EC1,C2 , that is EC2,C1(1) = 2,
EC2,C1(2) = 0.5 The marginal exchange rate is now MC2,C1 = 0.5× 2 + 0.5× 0.5 = 1.25, and

dQ1

dQ2

=
EC2,C1

MC2,C1

=

{
1.6 if ω = 1,
0.4 if ω = 2.

So, Q1({1}) = 0.5× 1.6 = 0.8 and Q1({2}) = 0.5× 0.4 = 0.2. Using currency C1, the expected
losses for actions a and b are respectively 0.5 × 0.8 + 2 × 0.2 = 0.8 and 1. The agent chooses a.
Using currency C2, the expected losses are 1 and 1.25 (as in Example 1) and the agent chooses a
again, as expected.

We do not know how the minimax decision maker can resolve the inconsistent choices in
Example 1, and we leave it as an open question.

5. WHEN CURRENCY DOESN’T MATTER

There are cases in which the currency used for charging a loss does not affect the decision.

Lemma 7. Assume the conditions of Theorem 1. Let C1 and C2 be two currencies in C with
corresponding probability/utility pairs (P1, UP1) and (P2, UP2) and with marginal exchange rate
equal to 1. Then the following are equivalent:

• for each q, the two expected utilities from paying the loss in units of C1 and C2 are equal,
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• L(·, q) is uncorrelated with EC1,C2 under P1 for all q,

• L(·, q) is uncorrelated with EC2,C1 under P2 for all q.

Proof. First, we show that the second bullet implies the first and third bullets. Suppose
that L(·, q) is uncorrelated with EC1,C2 under P1 for all q. According to Lemma 5, dP2/dP1 =
EC1,C2MC2,C1 , so L(·, q) is uncorrelated with dP2/dP1 under P1. Then, for each q,

P2(L(·, q)) =

∫
Ω

L(ω, q)dP2(ω) =

∫
Ω

L(ω, q)
dP2

dP1

(ω)dP1(ω) = P1(L(·, q))P1

(
dP2

dP1

)
= P1(L(·, q)),

where the third equality follows from L(·, q) and dP2/dP1 being uncorrelated under P1. This
establishes the first bullet.

Next, we show that L(·, q) is uncorrelated withEC2,C1 under P2, which is equivalent to showing
that L(·, q) is uncorrelated with dP1/dP2 under P2. We have

P2

(
L(·, q)dP1

dP2

)
= P1(L(·, q)) = P2(L(·, q)) = P2(L(·, q))P2

(
dP1

dP2

)
,

which is the third bullet. That the third bullet implies the first two follows by repeating the above
argument with subscripts 1 and 2 switched.

To complete the proof, it suffices to show that the first bullet implies the second bullet. Suppose
that P2(L(·, q)) = P1(L(·, q)) for all q. Since EC1,C2 is a constant times dP2/dP1, we need to show
that

P1

(
L(·, q)dP2

dP1

)
= P1(L(·, q))P1

(
dP2

dP1

)
. (21)

The left side of (21) is P2(L(·, q)) and the right side is P1(L(·, q)), which are equal. �
The ability to apply Lemma 7 depends on how complicated the loss function is and how com-

plicated the decision rules q ∈ E are. If all of the random variables that go into determining the
loss (and q) are independent of EC1,C2 under P1, then L(·, q) is uncorrelated with EC1,C2 under P1

for all q, and the lemma says that all actions will be ranked the same regardless of which currency
(C1 or C2) is used to pay the loss. Put less technically, if the decision problem is independent of
the exchange rate, then it doesn’t matter what currency is used for charging the loss.

6. ELICITATION VIA PROPER SCORING RULES

6.1 Elicitation as a Decision Problem

Proper scoring rules were designed to give experts the proper incentives for providing their
subjective probabilities and expected values when being elicited. Being scored by a proper scoring
rule is a special case of a statistical decision problem.

Definition 7. (Proper Scoring Rule) Let R be a set of real numbers and let (X ,D) be a mea-
surable space. Let g : X × R → [0,∞] be a function such that g(x, q) is measurable in x for
all q. For each probability Q over Ω and each bounded random variable X , let Q(X) denote the
mean of X . Suppose that, for every Q and every X , Q[g(X, q)] is minimized as a function of q at
q = Q(X). Then g is a proper scoring rule. If, for every Q, q = Q(X) is the unique minimizer,
then g is strictly proper.
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Definition 7 could be extended to allow unbounded random variables, but then one has to deal with
the possibility of infinite or undefined means.

Suppose that we wish to learn a particular agent’s subjective expectation for a random variable
X (possibly the indicator of an event). Let g be a strictly proper scoring rule. We can create a sta-
tistical decision problem with loss function L(ω, q) = g(X(ω), q). If we were able to convince the
agent to provide us with the value q that minimizes

∫
Ω
g(X(ω), q)dQ(ω), where Q is the agent’s

subjective probability distribution, we would learn Q(X), according to the definition of proper
scoring rule. But Theorem 1 says that the solution to a statistical decision problem depends on
which currency is used for charging the loss (score). If the agent is being given the proper incen-
tive for providing his/her subjective probability of an event, then how can the elicited probability
depend on which currency is being used for scoring?

The answer is straightforward. If we use currency C for scoring, we end up eliciting Q(X),
whereQ is the probability that corresponds to the utility that givesC state-independent values. The
confusion arises from mistakenly thinking that expected utility maximizers have a single subjective
probability that combines with a single utility function to represent their preferences.

Schervish, Seidenfeld, and Kadane (1990) found similar results when using the gambling for-
mulation of DeFinetti (1974) to elicit probabilities in finite spaces. DeFinetti noticed a shortcoming
of the use of gambles for elicitation, and preferred to use a proper scoring rule. When an agent is
gambling, there is an opponent who gets to choose which side of the gamble to take. Suppose that
the agent has reason to believe that the the opponent has a higher mean for the random variable
of interest than does the agent. Then the agent will have an incentive to specify a slightly higher
value than his/her true mean. Here is an example.

Example 7. In the gambling formulation of elicitation, the agent is asked to specify the mean
µ of a random variable X with the understanding that the agent then feels that it is fair to receive
α[X(ω)−µ] in state ω, where the real scalar α is chosen by an opponent. For example suppose that
the agent thinks that µ = 0.6 meets the above condition, but the agent is certain that the opponent
would choose µ ≥ 0.8 if it were up to the opponent. So, the agent feels that [X(ω)−0.7] would be
advantageous to receive, as it is 0.1 higher than the fair value of [X(ω)− 0.6]. Also, the opponent
(in the opinion of the agent) would think it is advantageous to receive −[X(ω) − 0.7] as it is 0.1
higher than the fair −[X(ω) − 0.8]. In this case, the agent has an incentive to specify a value of
µ that is higher than his/her mean of X , hence the gambling formulation would fail to provide a
proper elicitation in this case.

Strategic considerations of the sort in Example 7 can undermine the value of gambling as an elicita-
tion method. Scoring rules do not involve an opponent who has any decisions that should influence
the agent. In this paper, we have extended the results of Schervish et al. (1990) to proper scoring
rules as well as all statistical decision problems, even in general spaces.

Lemma 7 has a simpler form when restricted to elicitation via proper scoring rules.

Proposition 2. Let C1 and C2 be two currencies with corresponding probability/utility pairs
(P1, UP1) and (P2, UP2). Then the following are equivalent:

• P1(X) = P2(X),

• X is uncorrelated with EC1,C2 under P1,
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• X is uncorrelated with EC2,C1 under P2.

The proof of Proposition 2 is similar to that of Lemma 7 and will not be given.
One can elicit other aspects of a probability distribution, such as quantiles, using other loss

functions. For example,
∫

Ω
|X(ω)− q|dP (ω) is minimized over q by q equal to any median of the

distribution of X under P . For more general quantiles, one can use loss functions of the form

L(ω, q) =

{
a[X(ω)− q] if X(ω) > q,
b[q −X(ω)] if X(ω) ≤ q, (22)

where a, b > 0. In this case,
∫

Ω
L(ω, q)dP (ω) is minimized by q equal to any a/(a+ b) quantile of

the distribution of X under P . In such a decision problem, if the loss is settled in a currency, the
quantile elicited will be from the probability corresponding to the currency.

6.2 Strategic Choice of Currency

Suppose that we wish to elicit the mean of a random variable from an agent who is given the
choice of in which currency to be scored before announcing the mean. Are some currency choices
better than others? Without further conditions, the answer is an obvious “yes”. Surely it is better
to pay a score of x units in pennies than to pay x units in dollars. To avoid such trivial answers, we
need to standardize currencies somehow, and compare only those currencies that are of the same
size according to the standardization. But even that appears not to be enough to prevent strategic
choice of currency.

Example 8. Let Ω = (0, 1). Suppose that we are trying to elicit the probability of the event
F = (0, 1/2). That is, X(ω) is the indicator of F . Suppose that we are using Brier score, g(x, q) =
(x − q)2. Suppose also that we assume that utility is linear in all of the currencies that we use in
this example. Let P1 be the probability corresponding to a currency C1 having state-independent
values, and let WP1,C1 = 1. Suppose that P1 is the uniform distribution on (0, 1). If the agent
chooses to be scored in currency C1, then q = P1(F ) = 1/2, and the expected Brier score is
= VarP1(X) = 1/4.

Each alternative currency C2 corresponds to a conditional exchange rate EC1,C2(·) = WP1,C2(·)
that is integrable with respect to P1. The corresponding probability P2 that gives currency C2 state-
independent values has dP2/dP1 = WP1,C2/c, where c = P1[WP1,C2 ] = MC1,C2 , is the marginal
exchange rate. If the agent chooses to be scored in currency C2, the probability is

P2(F ) =

∫ 1/2

0

WP1,C2(ω)

c
dω.

For example, suppose that we consider a currency C2 with WP1,C2(ω) = 2ω = dP2/dP1 so that
c = 1. Then P2(F ) = 1/4 = q, and the expected Brier score under P2 is VarP2(X) = 3/16. Since
the marginal exchange rate is 1, paying 3/16 units of C2 is preferred to paying 1/2 unit of C1.

Taking the above comparison betweenC1 andC2 further, letCn be a currency withWP1,Cn(ω) =
nωn−1. Then Pn(F ) = 1/2n, MC1,Cn = 1, and VarPn(X) = (1 − 2−n)/2n. The differences be-
tween the expected scores in currencies C1 and Cn cannot be explained by the marginal exchange
rate between the two currencies, since the marginal exchange rates are all 1. What is happening is
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that Cn is essentially worthless (when measured in units of C1) if F occurs. The agent announces a
very small probability of F , and agrees to pay a large score in currency Cn if F occurs. But such a
large score is not worth much in other currencies. If FC occurs, making Cn more valuable relative
to other currencies, the agent doesn’t have to pay very much in units of Cn because Pn(FC) is
close to 1.

The same strategic consideration, i.e. choice of currency does not arise when using gambles
for elicitation. In that formulation, the gambles to which an agent commits are all fair regardless
of in what currency they are settled. Without a secondary criterion with which to distinguish fair
gambles, there is no way to choose between them.

6.3 Choice of Scoring Rule

Another strategic consideration arises if the agent is given the choice of which scoring rule will
be used to score the elicitation. Clearly, scaling a scoring rule down is advantageous to the agent
being scored. In order to compare scoring rules that are comparable in terms of the payout, we
need an appropriate standardization. One naı̈ve standardization is to scale by supx,q g(x, q).

For simplicity, consider the case in which X is the indicator of some event. According to
Theorem 4.2 of Schervish (1989), every bounded left-continuous strictly proper scoring rule with
g(x, x) = 0 for x ∈ {0, 1} has the form

g(x, q) =

{ ∫
[0,q)

pdλ(p) if x = 0,∫
[q,1)

(1− p)dλ(p) if x = 1. (23)

for some measure λ on [0, 1] that assigns positive measure to every nondegenerate interval. In order
for supx,q g(x, q) = 1, we need λ to be two times a probability that has mean of 1/2. By choosing
λ to put as much of its mass as possible near the two extreme values of 0 and 1, the expected score
can be made as close as one likes to 0 no matter what q happens to be. Hence, the agent would like
to be scored by a rule corresponding to such a λ, regardless of the currency.

An alternative normalization of scoring rules is to use the maximin expected score. That is,
normalize by supq[qg(1, q) + (1 − q)g(0, q)]. In this case, the expected score will lie on a strictly
concave curve m on [0, 1] with a maximum value of 1 and satisfying m(0) = m(1) = 0. If
m(q0) = 1, then the curve m lies strictly above the piecewise linear function f(q) = min{(1 −
q0)q, (1 − q)q0} (except for q ∈ {0, q0, 1} where f(q) = m(q)). We can make m(q) arbitrarily
close to f(q) by making λ concentrate its mass arbitrarily close to q0. In such a case, if the
agent’s subjective probability of the event being forecast is q, then the best expected score will be
approximately f(q), which will be minimized by choosing λ so that q0 = 1 if q < 1/2 and q0 = 0
if q > 1/2. If q = 1/2, either q0 = 0 or q0 = 1 will do equally well. If the agent also gets to choose
the currency along with the scoring rule, he/she would choose a currency such that q is as close to
0 or 1 as is feasible and match it with a scoring rule that made the optimal expected score as close
as possible to 0 near that q.

In the gambling framework, there is no obvious strategic counterpart to the choice of the scoring
rule on the part of the agent being scored.

16



6.4 Converting Between Currencies

Our results show that a mean elicited by a scoring rule comes from the probability P associated
with the utility UP that gives state-independent values to the currency used for eliciting. In general
it is not possible to inferQ(X) from P (X) even if we know the conditional exchange rate between
the two currencies CP and CQ that have state-independent values under P and Q respectively.
Even when X is the indicator of an event F , we have Q(F ) =

∫
F

dQ
dP

(ω)dP (ω). It is true that

dQ

dP
=
ECP ,CQ

MCP ,CQ

, (24)

but we still need to know P for all subsets of the event F , not just P (F ) (unless ECP ,CQ
is constant

over F or FC). In general,

Q(X) = P

(
X
dQ

dP

)
=
P (XECP ,CQ

)

MCP ,CQ

, (25)

which can also be written as P (XECP ,CQ
) = Q(X)P (ECP ,CQ

).
Also, if an agent believes that he/she has a subjective probability P constructed by a method

such as (DeGroot 1970, Chapter 6), we will not be able to elicit this probability unless we stumble
upon a currency that has state-independent values with respect to (P,UP ). The theory developed by
DeGroot (1970) is designed to deal only with the case in which utility values are state-independent.

6.5 Finite State Spaces

In finite state spaces, we can make a bit more progress. Let Ω = {ω1, . . . , ωn}. Schervish et al.
(1990) dealt with this case, and the events whose probabilities were being elicited (via gambles)
were singletons {ω1}, . . . , {ωn}. In such cases, ECP ,CQ

is constant on singletons, hence we can
convert probabilities of singletons from one currency to the next if both the conditional exchange
rate and the marginal exchange rate are known. If the probabilities of all singletons are elicited in
the same currency, then the marginal exchange rate can be computed from the conditional exchange
rate. If the probability of each singleton is elicited in a (possibly) different currency, one can set
up a system of equations whose solution will give the necessary marginal exchange rates.

To be specific, suppose that the probability of {ωi} is elicited in currency Ci for i = 1, . . . , n
with corresponding probabilities P1, . . . , Pn. Let C0 be a currency with corresponding probability
P0. We assume that we know EC0,Ci

for all i, even if we don’t know MC0,Ci
. So, we elicit

Pi({ωi}) = pi for i = 1, . . . , n. As in (24),

P0({ωi}) = Pi({ωi})
ECi,C0(ωi)

MCi,C0

= pi
MC0,Ci

EC0,Ci
(ωi)

. (26)

For each i, we can set up an equation giving the value of MC0,Ci
. According to (19) and then (26),

MC0,Ci
=

n∑
j=1

P0({ωj})EC0,Cj
(ωj) =

n∑
j=1

pjMC0,Cj
. (27)
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For i = 1, . . . , n, (27) gives us n linear equations in (at most) n unknowns MC0,Ci
for i = 1, . . . , n.

The equations are linearly dependent, and every scalar multiple of each solution is also a solution.
The appropriate scaling can be determined from the fact that

∑n
i=1 P0({ωi}) = 1. If two or more

events were elicited in the same currency, there will be further linear dependence, which could be
removed by using only one equation for each unique currency.

7. DISCUSSION

This paper is based on the fact that preferences between Anscombe and Aumann (1963)-style
horse lotteries cannot reveal a unique probability and state-independent utility in the presence of
currencies with state-dependent values. The most that one can determine is a state-dependent ex-
pected utility representation. Karni, Schmeidler, and Vind (1983) and Schervish, Kadane, and Sei-
denfeld (1991) develop a mathematical theory of preference that leads to a unique state-dependent
utility representation. That theory, however, is based on a hypothetical generalization of NM lot-
teries that requires an agent to imagine that one could stipulate a probability distribution over pairs
of prizes and states of nature. That is, NM lotteries are augmented by probability distributions over
R × Ω. Such prize-state lotteries would use auxiliary randomizations to choose both a prize and
a state of nature. Imagining the ability to choose a state of nature, or even to cause the state of
nature to be chosen by a coin flip or similar randomization, might seem too unrealistic to be taken
seriously as a foundation for decision theory, even though the theory is mathematically sound.

As in Schervish et al. (1990), where we considered elicitation via gambles, we see that general
statistical decision problems suffer from possible state-dependence of the currency used for charg-
ing the loss. When one pays the loss in a particular currency C, then a Bayesian will solve the
decision problem using the probability Q where (Q,UQ) is the particular state-dependent utility
representation of the agent’s preferences such that currency C has state-independent values under
UQ. If one changes the currency to C ′ and (Q′, UQ′) is an equivalent state-dependent utility for
which C ′ has state-independent values under UQ′ , then the agent will solve the decision problem
using probability Q′. Lemma 7 and Proposition 2 give conditions under which the solutions to
various decision problems will not depend on the currency in which the loss is paid.

We examine elicitation of subjective probability in detail because the implications of state-
dependent utility are so striking for elicitation. Under some restrictive conditions, one can convert
means elicited in one currency to means that would have been elicited in another currency. But, one
cannot elicit an agent’s “true subjective probability” (whatever that means) unless that probability
happens to correspond to a state-dependent utility that happens to give state-independent values
to the currency in which one does the elicitation. If the random variable whose prevision is being
elicited is uncorrelated with the conditional exchange rate between two currencies, then the same
prevision will be elicited using either currency. If one is to take seriously the idea that elicited
probabilities stand for something that can be used for statistical inference, one needs to be confident
that those probabilities were derived in a manner consistent with their intended use. If it is possible
to constrain the effects of the decisions so that they don’t involve fortunes whose relative values
vary from state-to-state, then one can feel safe that probabilities elicited using such fortunes as
currency values will be meaningful. The challenge is making sure that the decision problem is so
constrained.

Additional work is needed in order to identify the implications of state-dependence on decision
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problems with multiple decision points. For example, an agent may get the opportunity to revise a
decision after learning additional information. The agent may be asked to make several decisions at
different times. It is well-known that exchange rates change over time, and it makes sense to model
exchange rates as stochastic processes. In this paper, we have considered only two times, namely,
when the decision is made and when the loss is paid. We also believe that state-dependence has
implications for financial product pricing, especially in the foreign exchange market.

Finally, we have presented some results concerning strategic choices that an agent might make
when being scored, but we have not yet studied strategic choices that are available to the elicitor
who is requesting the elicited prevision. Such a study could proceed if we specified how the elicited
prevision was going to affect the elicitor as well as his/her state-dependent utility representation
and his/her opinion of the agent. This problem is left for future study.
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