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Outline

What we basically want to do: hierarchical imputation

What we encounter: effects of MAR-settings

Questions: explanation of these effect
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Our research

DFG-Project

Reason for hierarchical imputation:

– Item-Nonresponse → nonresponse bias
– Imputation → reduce or unmake nonresponse bias
– Hierarchical data → hierarchical imputation

Aim for unbiased linear mixed model parameter estimates

Which imputation method works well, which not? And why?

– Focus on dummy variables imputation
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Notation

Hierarchical data in our case:

yj,i = β0 + b0j + (β1 + b1j) ⋅ xj,i + εj,i

i = 1, . . . , nj

j = 1, . . . , m

nj ≙ size of cluster j

m ≙ number of clusters

(b0j

b1j

) ∼ N ((0
0
) , Σb ∶= (

σ2
b0

σb1b0

σb0b1 σ2
b1

))

εj,i ∼ N(0, σ2
ε)

βj = β + bj
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Dummy variables imputation

Dummy imputation only hierarchical imputation method implemented in
SAS, SPSS and Stata.

Estimates cluster specific intercept and slope imputation parameters
(assumed fixed not random)

Under which data and missing generating setting biased results?

Explanations for the bias?
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Shortly: the main results

cluster size = 10 cluster size = 25 cluster size = 50
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Figure: Relative bias after dummy imputation for different settings.
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Side results

Not only data setting important, but also shape of missing function.

Don’t mean MCAR vs. MAR vs. MNAR (Rubin (1976)). Mean different
missing functions within MAR.

Discussing Effects of Different MAR-Settings 7



General missing function

Missing function for standardized Xi , desired missing rate MR ≤ 0.5 and
−1 ≤ s ≤ 1:

P(Yi = NA∣Xi , MR, s) = MR ⋅ (1 − s) + 2 ⋅MR ⋅ s ⋅ logit(Xi)−1 (1)

s controls strength and direction of X ’s influence on the missing
probabilities.

– MCAR if s = 0

Missing probabilities on average equal to MR if X symmetrically
distributed around 0 (proof missing).
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Illustrations missing mechanism: varying MR
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Figure: Illustration of missing probabilities for different missing rates
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Illustrations missing mechanism: varying s
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Figure: Five different shapes of missing functions (s = 1, 0.5, 0, −0.5 , −1). All
lead to MAR, except MCAR of course.
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Results when estimating Σb after dummy imputation
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Figure: Relative empirical biases under different missing functions.

Discussing Effects of Different MAR-Settings 11



Questions

1. Explanation for differences in parameter estimates for different MAR
settings?

2. Sufficient to look at variance matrix from imputation parameters
(instead of variances after imputation)?

– Sufficient to look at variance matrices of a single cluster?

3. If bias in var(β̂j)fix not clearly visible, sufficient to compare it to the
unbiased var(β̂j)rand?

– How to say ”matrix A is larger than matrix B”? Elementwise comparison?
– Multiplicative or additive matrix? Interpretation?
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Imputation parameters variances

Main interest in

Var(β̂j ∣β, Σb, σ
2
ε)fix ≅(readability)Var(β̂j)fix = σ2

ε ⋅ (X T X)−1 (2)

Maybe compare it to what can be found in (Goldstein, 2011: p. 69)

Var(β̂j ∣β, Σb, σ
2
ε)rand ≅ Var(β̂j)rand = σ2

ε ⋅ (X T X + σ2
ε ⋅Σ−1

b )
−1

(3)

Beside elementwise comparison, multiplicative and additive term

γ ⋅ Var(β̂j)rand = Var(β̂j)fix (4)

δ + Var(β̂j)rand = Var(β̂j)fix (5)
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Multiplicative disparity

Properties and interpretation of γ?

γ ⋅ Var(β̂j)rand = Var(β̂j)fix

γ ⋅ σ2
ε ⋅ (X T X + σ2

ε ⋅Σ−1
b )
−1 = σ2

ε ⋅ (X T X)−1

γ = (X T X)−1 ⋅ (X T X + σ2
ε ⋅Σ−1

b )
= (X T X)−1 ⋅ X T X + (X T X)−1 ⋅ σ2

ε ⋅Σ−1
b

= I + (X T X)−1 ⋅ σ2
ε ⋅Σ−1

b

= I + Var(β̂j)fix ⋅Σ−1
b

(6)
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Additive disparity

Properties and interpretation of δ?

γ ⋅ Var(β̂j)rand = Var(β̂j)fix

(I + Var(β̂j)fix ⋅Σ−1
b ) ⋅ Var(β̂j)rand = Var(β̂j)fix

Var(β̂j)rand + Var(β̂j)fix ⋅Σ−1
b ⋅ Var(β̂j)rand = Var(β̂j)fix

(7)

Now, we have the matrix δ:

δ = Var(β̂j)fix ⋅Σ−1
b ⋅ Var(β̂j)rand

δ = (X T X)−1 ⋅ σ2
ε ⋅Σ−1

b ⋅ σ2
ε ⋅ (X T X + σ2

ε ⋅Σ−1
b )
−1 (8)
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Additional material
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Details of imputation parameters variance

Dummy imputation:

Var(β̂j)fix = σ2
ε

n ⋅ ∑ x2
i − (∑ xi)2

⋅ ( ∑ x2
i −∑ xi

−∑ xi n
) (9)

= σ2
ε

n2 ⋅ var(x) ⋅ (
∑ x2

i −∑ xi

−∑ xi n
) (10)

Mixed effects imputation:

Var(β̂j)rand = σ2
ε ⋅ ((

n ∑ xi

∑ xi ∑ x2
i
) + σ2

ε

σ2
0 ⋅ σ2

1 − σ2
01
⋅ ( σ

2
1 −σ01

−σ01 σ2
0
))
−1

(11)

To shorten the expression, I define a ∶= σ2
ε

σ2
0 ⋅σ

2
1−σ

2
01

.

Var(β̂j)rand = σ2
ε ⋅ (

n + a ⋅ σ2
1 ∑ xi − a ⋅ σ01

∑ xi − a ⋅ σ01 ∑ x2
i + a ⋅ σ2

0
)
−1

(12)
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Details of imputation parameters variance (cont.)

Var(β̂j)rand = σ2
ε

(n + a ⋅ σ2
1) ⋅ (∑ x2

i + a ⋅ σ2
0) − (∑ xi − a ⋅ σ01)2

⋅ ( ∑ x2
i + a ⋅ σ2

0 −∑ xi + a ⋅ σ01

−∑ xi + a ⋅ σ01 n + a ⋅ σ2
1
)

(13)
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Details on delta

δ =Var(β̂j)fix ⋅Σ−1
b ⋅ Var(β̂j)rand

= σ2
ε

n2 ⋅ var(x) ⋅ (
∑ x2

i −∑ xi

−∑ xi n
)

⋅ 1
σ2

0 ⋅ σ2
1 − σ2

01
⋅ ( σ

2
1 −σ01

−σ01 ∑σ2
0
)

⋅ σ2
ε

(n + a ⋅ σ2
1) ⋅ (∑ x2

i + a ⋅ ∑σ2
0) − (∑ xi − a ⋅ σ01)2

⋅ (∑ x2
i + a ⋅ ∑σ2

0 −∑ xi + a ⋅ σ01

−∑ xi + a ⋅ σ01 n + a ⋅ σ2
1
)

(14)
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Our simulation parameters

Hierarchical data in our case:

yj,i = 62.1 + b0j + (0.8 + b1j) ⋅ xj,i + εj,i

(b0j

b1j

) ∼ N ((0
0
) , Σb ∶= (

6.2 0.4
0.4 0.1

))

εj,i ∼ N(0,92.2)
xj,i ∼ N(0,81)
nj dependent on setting ∶ 10, 25, or 50

m = 100

Individuals’ class affiliation known and variable in data set. Parameters
from NEPS data (and similar to CILS4EU data).
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