Likelihood based analyses concerning coarsened categorical data

Julia Plaß

18th of June 2014

Outline

Introduction to the problem

- Likelihood in case of iid variables
 - Initial situation and the general likelihood
 - Estimation of parameter of interest...
 - ... implying some assumptions
 - ... without any assumptions

3 Likelihood in case of incorporating covariates

- Initial situation and the general likelihood
- Estimation of parameters of interest ...
 - ... implying the assumption of CAR
 - ... without any assumptions

4 Limiting case iid and case with covariate

5 Summary and outlook

Introduction to the problem of coarse data

Reasons for coarse categorical data:

• Guarantee of anonymization, prevention of refusals

Example:

"Which kind of party did you elect?"

 \Box rather left $\ \Box$ center $\ \Box$ rather right

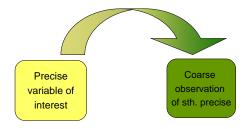
• Different levels of reporting accuracy

(lack of knowledge, vague question formulation)

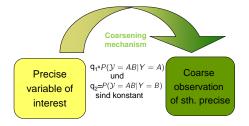
Examples:

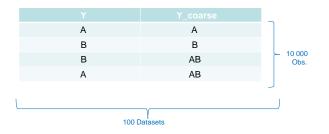
"To which electoral district do you belong to?" "Which car do you drive?"

Initial situation (iid case)



Initial situation (iid case)





The general log-likelihood

Likelihood :

$$L(\pi_A, q_1, q_2) = \prod_{\mathcal{Y}_i} P(\mathcal{Y} = \mathfrak{Y})$$

=
$$\prod_{i:\mathcal{Y}_i = A} \underbrace{P(\mathcal{Y} = A | Y = A)}_{(1-q_1)} \pi_{iA} \prod_{i:\mathcal{Y}_i = B} \underbrace{P(\mathcal{Y} = B | Y = B)}_{(1-q_2)} (1 - \pi_{iA})$$
$$\prod_{i:\mathcal{Y}_i = AB} \underbrace{P(\mathcal{Y} = AB | Y = A)}_{q_1} \pi_{iA} + \underbrace{P(\mathcal{Y} = AB | Y = B)}_{q_2} (1 - \pi_{iA})$$

log-Likelihood under the iid assumption :

$$\begin{aligned} l(\pi_A, q_1, q_2) &= n_A \cdot [ln(1-q_1) + ln(\pi_A)] + n_B \cdot [ln(1-q_2) + ln(1-\pi_A)] \\ &+ n_{AB} \cdot [q_1 \pi_A + q_2(1-\pi_A))] \end{aligned}$$

The general log-likelihood

FOC:

I.)
$$\frac{\partial}{\partial \pi_A} = \frac{n_{AB}}{q_1 \pi_A + q_2 (1 - \pi_A)} (q_1 - q_2) + \frac{n_A}{\pi_A} - \frac{n_B}{1 - \pi_A} \stackrel{!}{=} 0$$

II.) $\frac{\partial}{\partial q_1} = \frac{n_{AB}}{q_1 \pi_A + q_2 (1 - \pi_A)} \pi_A - \frac{n_A}{1 - q_1} \stackrel{!}{=} 0$
III.) $\frac{\partial}{\partial q_2} = \frac{n_{AB}}{q_1 \pi_A + q_2 (1 - \pi_A)} (1 - \pi_A) - \frac{n_B}{1 - q_2} \stackrel{!}{=} 0$

Neccessary and sufficient solutions:

Estimators $(\hat{\pi}_A, \hat{q}_1, \hat{q}_2)$ are solutions of the estimation problem if and only if

$$rac{n_{AB}}{n} = \hat{q}_1 \cdot \hat{\pi}_A + \hat{q}_2 \cdot (1 - \hat{\pi}_A)$$

is fulfilled with $\hat{\pi}_A$, \hat{q}_1 and $\hat{q}_1 > 0$ and < 1.

Distinguishing different cases

Estimation of parameter of interest

- ... implying point-identifying assumptions
 - known coarsening mechanism
 - $q_1 = q_2$: data are coarsened at random (CAR)

$$\hat{\pi}_A = \frac{n_A}{n_A + n_B}$$

$$\hat{q}_1 = \hat{q}_2 = \frac{n_{AB}}{n_A + n_B + n_{AB}}$$

• relation between coarsening parameters $R = \frac{q_1}{q_2}$ is known \Rightarrow Generalization of CAR

... without any assumptions

 \Rightarrow Find lower and upper bounds of parameter estimators

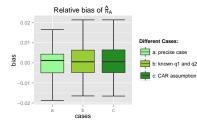
Implying assumptions: CAR

Evaluation of $\hat{\pi}_A$

by means of comparing relative bias

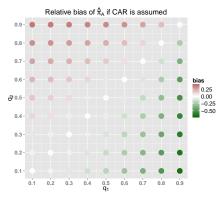
$${\it Bias}_{\sf rel} = rac{\hat{\pi}_{A} - \pi_{A}}{|\pi_{A}|}$$

in the following three situations:



Analysis if CAR is wrongly assumed

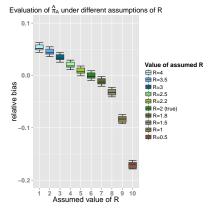
Median relative bias of $\hat{\pi}_A$ for different combinations of true q_1 - and q_2 values is considered:

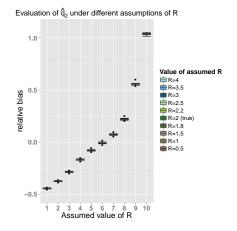


Implying assumptions: relation R (two true categories)

Regarded situation:

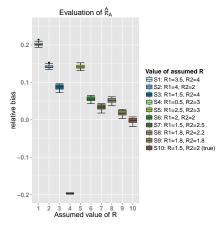
$$q_1 = 0.3, \; q_2 = 0.15 \Rightarrow R_{\text{true}} = \frac{q_1}{q_2} = 2$$





Implying assumptions: relation R (three true categories)

Now three true categories (A, B, C) and coarse categories AB and AC $q_{AB|A} = 0.4$, $q_{AB|B} = 0.2\overline{6} \Rightarrow R_{1,\text{true}} = \frac{q_{AB|A}}{q_{AB|B}} = 1.5$ $q_{AC|A} = 0.4$, $q_{AC|C} = 0.2 \Rightarrow R_{2,\text{true}} = \frac{q_{AC|A}}{q_{AC|C}} = 2$

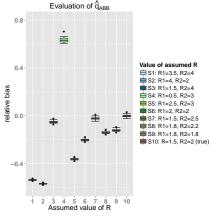


Different assumptions of R:

- Iarge...
 - ... deviation of R1 & R2 (S1)
 - ... deviation of R1 only (S2)
 - ... deviation of R2 only (S3)
- medium...
 - ... reverse deviation of R1 & R2 (S4)
 - ... concordant deviation of R1 & R2 (S5)
 - ... deviation of R1 only (S6)
 - ... deviation of R2 only (S7)
- small...
 - ... concordant deviation of R1 & R2 (S8)
 - ... reverse deviation of R1 & R2 (S9)
- true assumptions (S10)

Implying assumptions: relation R (three true categories)

Now three true categories (A, B, C) and coarse categories AB and AC $q_{AB|A} = 0.4$, $q_{AB|B} = 0.2\overline{6} \Rightarrow R_{1,\text{true}} = \frac{q_{AB|A}}{q_{AB|B}} = 1.5$ $q_{AC|A} = 0.4$, $q_{AC|C} = 0.2 \Rightarrow R_{2,\text{true}} = \frac{q_{AC|A}}{q_{AC|C}} = 2$



Different assumptions of R:

- Iarge...
 - ... deviation of R1 & R2 (S1)
 - ... deviation of R1 only (S2)
 - ... deviation of R2 only (S3)
- medium...
 - ... reverse deviation of R1 & R2 (S4)
 - ... concordant deviation of R1 & R2 (S5)
 - ... deviation of R1 only (S6)
 - ... deviation of R2 only (S7)
- small...
 - ... concordant deviation of R1 & R2 (S8)
 - ... reverse deviation of R1 & R2 (S9)
- true assumptions (S10)

Implying no assumptions: Approaches

Main goal: Find bounds for π_A

Different approaches:

• Take Dempster-Shafer estimators: $\underline{\hat{\pi}_A} = \frac{n_A}{n}$ and $\overline{\hat{\pi}_A} = \frac{n_A + n_{AB}}{n}$

• Consider
$$I(\pi_A, \overline{\hat{q}_1}, \underline{\hat{q}_2}) \ (\Rightarrow \overline{\hat{\pi}_A})$$
 and $I(\pi_A, \underline{\hat{q}_1}, \overline{\hat{q}_2}) \ (\Rightarrow \underline{\hat{\pi}_A})$,

where
$$\hat{q}_1 = \frac{n_{AB}}{n_{AB} + n_A}, \quad \hat{q}_2 = 0$$

and $\hat{q}_1 = 0, \quad \hat{q}_2 = \frac{n_{AB}}{n_B + n_{AB}}$ resp.

• Solution by optimization problem

The empirical evidence only: Optimization problems

Optimization problem considering $I(\pi_A, q_1, q_2)$

Original problem:

Rearranged problem:

 $\begin{array}{ll} \pi_A \to \max & & \pi_A \to \max \\ \pi_A \to \min & & \pi_A \to \min \\ S(\pi_A, q_1, q_2) = \mathbf{0} \end{array} \right\} \begin{array}{l} \pi_A - \lambda \cdot S(\pi_A, q_1, q_2)^2 \to \max \\ \pi_A + \lambda \cdot S(\pi_A, q_1, q_2)^2 \to \min \end{array}$

Constraints:

Constraints:

<i>S</i> (π_A, c	$q_1, q_2)$	=	0					
0	\leq	π_A	\leq	1	0	<	\leq	π_A	≤ 1
0	\leq	q_1	\leq	1	0	<	\leq	q_1	≤ 1
0	\leq	q 2	\leq	1	0	<	\leq	q 2	≤ 1

\Rightarrow One can obtain the Dempster-Shafer estimators

The empirical evidence only: Optimization problems

Optimization problem considering $L(\pi_A)$

• Regarding the Likelihood $L(\pi_A)$:

 $L(\pi_A) = (\pi_A)^{\sum_{i=1}^n y_{iA}} \cdot (1 - \pi_A)^{\sum_{i=1}^n y_{iB}}$ where y_{iA} and $y_{iB} \in \{0, 1\}$

• Corresponding Scorefunction

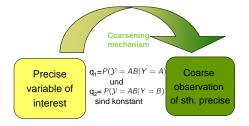
$$S(\pi_A) = \frac{\sum_{i=1}^{n} y_{iA}}{\pi_A} - \frac{\sum_{i=1}^{n} y_{iB}}{1 - \pi_A} \\ = \frac{n_A + n_{AB|A}}{\pi_A} - \frac{n_B + n_{AB} - n_{AB|A}}{1 - \pi_A}$$

• Possible optimization problem:

 $\begin{array}{rcl} \text{Objective function:} & \pi_A & - & \lambda \cdot (S(\pi_A))^2 \to \max \\ & \pi_A & + & \lambda \cdot (S(\pi_A))^2 \to \min \\ & \text{Constraints:} & 0 & \leq & \pi_A & \leq 1 \\ & 0 & \leq & n_{AB|A} & \leq n_{AB} \end{array}$

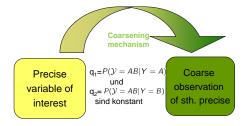
 \Rightarrow One can obtain the Dempster-Shafer estimators

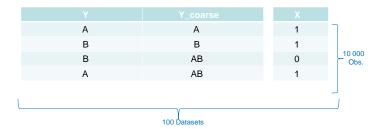
Initial situation (with covariates)



Y	Y_coarse
А	A
В	В
В	AB
А	AB

Initial situation (with covariates)





J.Plaß (Department of Statistics)

The general likelihood (with covariates)

Now:

 π_{iA} are dependent on the values \mathbf{x}_i by

$$\pi_{i\mathcal{A}} = rac{\exp(\mathbf{x}_i'oldsymbol{eta}_{\mathcal{A}})}{1+\exp(\mathbf{x}_i'oldsymbol{eta}_{\mathcal{A}})}$$

Resulting log-likelihood:

$$\begin{split} l(\beta_A, q_1, q_2) &= \sum_{i=1}^{N_1} & \ln\left((1-q_1)\frac{\exp(x'_i\beta_A)}{1+\exp(x'_i\beta_A)}\right) + \sum_{i=N_1+1}^{N_2} \ln\left((1-q_2)\frac{1}{1+\exp(x'_i\beta_A)}\right) + \\ &\sum_{i=N_2+1}^{N} \ln\left(q_1\frac{\exp(x'_i\beta_A)}{1+\exp(x'_i\beta_A)} + \frac{q_2}{1+\exp(x'_i\beta_A)}\right) \end{split}$$

Addressed cases:

- implying CAR-assumption
- general investigation

Estimation of parameters of interest ...

Implying CAR

Addressed situation:

model with two covariates assumption of CAR: $q_1 = q_2$ parameters of main interest: β

> • Evaluation of $\hat{\beta}$ by means of the relative bias

$$extsf{Bias}_{\mathsf{rel}} = rac{\hat{oldsymbol{eta}} - oldsymbol{eta}}{|oldsymbol{eta}|}$$

if CAR is involved into the estimation

Implying CAR

Addressed situation:

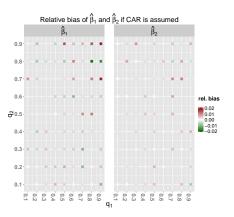
model with two covariates assumption of CAR: $q_1 = q_2$ parameters of main interest: β

Evaluation of by means of the relative bias

$$\textit{Bias}_{\mathsf{rel}} = rac{\hat{oldsymbol{eta}} - oldsymbol{eta}}{|oldsymbol{eta}|}$$

if CAR is involved into the estimation

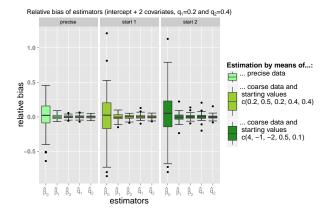
 Nearly unbiased estimators β₁ and β₂ in all situations that have been considered



No assumptions (with covariates)

Addressed model:

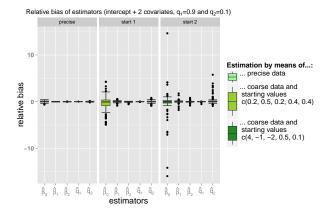
Two covariates - $X_1 \sim Po(3)$ and $X_2 \sim N(mean = 0, sd = 2)$



No assumptions (with covariates)

Addressed model:

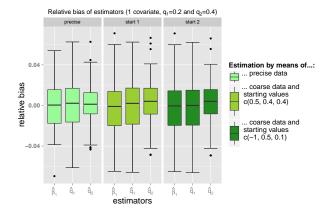
Two covariates - $X_1 \sim Po(3)$ and $X_2 \sim N(mean = 0, sd = 2)$



No assumptions (with covariates)

Addressed model:

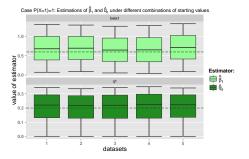
One covariates - $X_1 \sim N(mean = 3, sd = 7)$



Limiting case

Investigation of the transition from iid-case to case with one covariate

Cases: P(X=1)=1 P(X=1)=0.99 P(X=1)=0.9



Calculate corresponding \$\hat{\pi}_{iA}\$ for
 X_i = 1 by

$$\hat{\pi}_{iA} = rac{\exp(x_i\hat{eta}_A)}{1+\exp(x_i\hat{eta}_A)}$$

Compare...

- ... min(π̂_A) and max(π̂_A) with bounds from DST interval
- ... $\min(\hat{q}_1)$ and $\max(\hat{q}_2)$ with

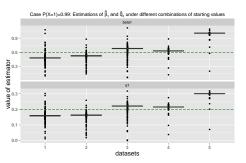
$$\underline{\hat{q}_1} = 0$$
 and $\overline{\hat{q}_1} = \frac{n_{AB}}{n_{AB}+n_A}$

 \Rightarrow nearly same values in both cases

Limiting case

Investigation of the transition from iid-case to case with one covariate

Cases: P(X=1)=1 P(X=1)=0.99 P(X=1)=0.9



Result of comparison:

Results for $\hat{\pi}_A$ ($\hat{\pi}_{A, prec} \approx 0.63$):

Data	DST interval	bounds from estimation
1	[0.5188, 0.7885]	[0.5254, 0.7459] (0.64)
2	[0.5253, 0.7879]	[0.5358, 0.7066] (0.65)
3	[0.5161, 0.7876]	[0.5166, 0.7535] (0.65)
4	[0.5105 0.7872]	[0.5315, 0.7076] (0.64)
5	[0.5104, 0.7887]	[0.5505, 0.7489] (0.64)

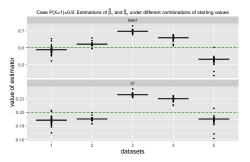
Results for \hat{q}_1 ($\hat{q}_{1,prec} \approx 0.20$):

Data	DST interval	bounds from estimation
1	[0, 0.3420]	[0.0120, 0.3017] (0.20)
2	[0, 0.3332]	[0.0186, 0.2580] (0.19)
3	[0, 0.3447]	[0.0001, 0.3170] (0.20)
4	[0, 0.3515]	[0.0388, 0.2747] (0.21)
5	[0, 0.3529]	[0.0712, 0.3181] (0.21)

Limiting case

Investigation of the transition from iid-case to case with one covariate

Cases: P(X=1)=1 P(X=1)=0.99 P(X=1)=0.9



Result of comparison:

Results for $\hat{\pi}_A$ ($\hat{\pi}_{A, prec} \approx 0.63$):

Data	DST interval	bounds from estimation
1	[0.5104, 0.7828]	[0.6275, 0.6577] (0.63)
2	[0.5141, 0.7795]	[0.6443, 0.6587] (0.63)
3	[0.5035, 0.7775]	[0.6632, 0.6746] (0.63)
4	[0.5009, 0.7800]	[0.6485, 0.7076] (0.63)
5	[0.4985, 0.7793]	[0.6072, 0.6461] (0.63)

Results for \hat{q}_1 ($\hat{q}_{1,prec} \approx 0.20$):

Data	DST interval	bounds from estimation
1	[0, 0.3480]	[0.1702, 0.2030] (0.19)
2	[0, 0.3405]	[0.1835, 0.1999] (0.19)
3	[0, 0.3524]	[0.2219, 0.2348] (0.20)
4	[0, 0.3578]	[0.2105, 0.2247] (0.21)
5	[0, 0.3603]	[0.1617, 0.2061] (0.21)

Summary and outlook

Summary

- In case of *iid* variables
 - ... generally a set of estimators results whose bounds can be obtained by nonlinear optimization
 - ... using correctly the assumptions of *CAR* leads to identified and nearly unbiased estimators
- In case of incorporating covariates
 - ... generally identified and nearly unbiased estimators seem to result
 - ... using CAR even if it is not valid at least results in nearly unbiased estimators for $\hat{\beta}_1$ and $\hat{\beta}_2$ (in model with 2 covariates)

Outlook

- Further investigation of transition from non-identifiable to identifiable model
- Think about reasons for identifiability in case of involving covariates
- Including other true coarsening mechanisms