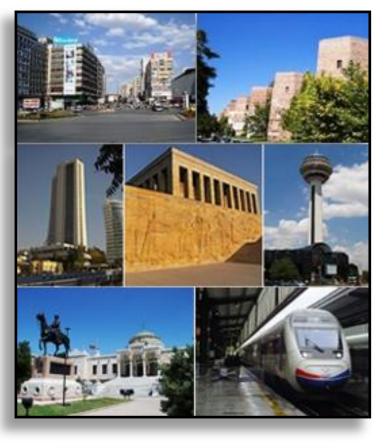


### **On using different error measures for fuzzy**

# linear regression analysis

Duygu İÇEN


Hacettepe University Department of Statistics Ankara /TURKEY

2013













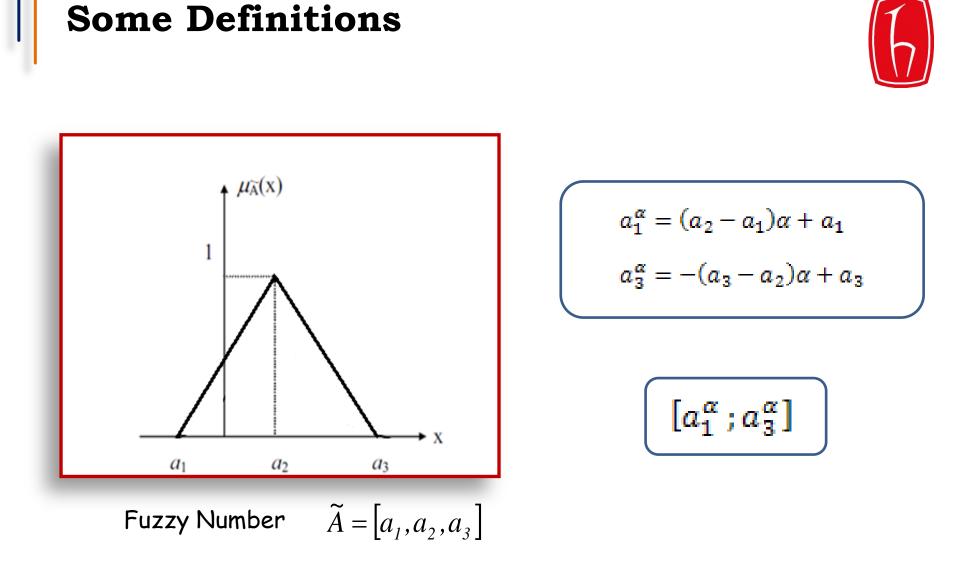
### **Presentation Plan**

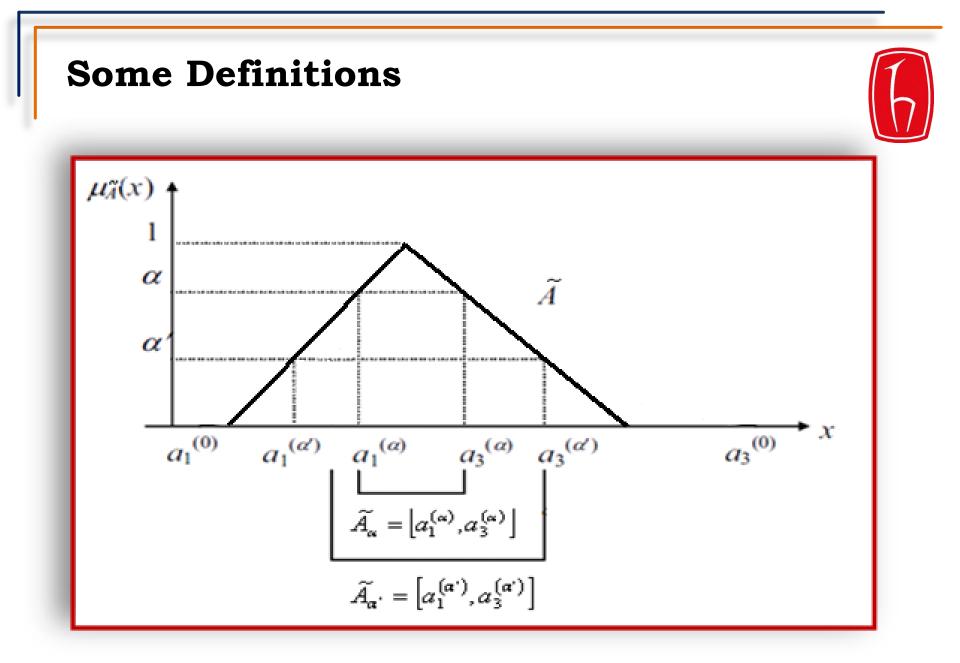
- Introduction
- Some Definitions
- Fuzzy linear regression with Monte Carlo method
- The simulation study
- Application
- Conclusion

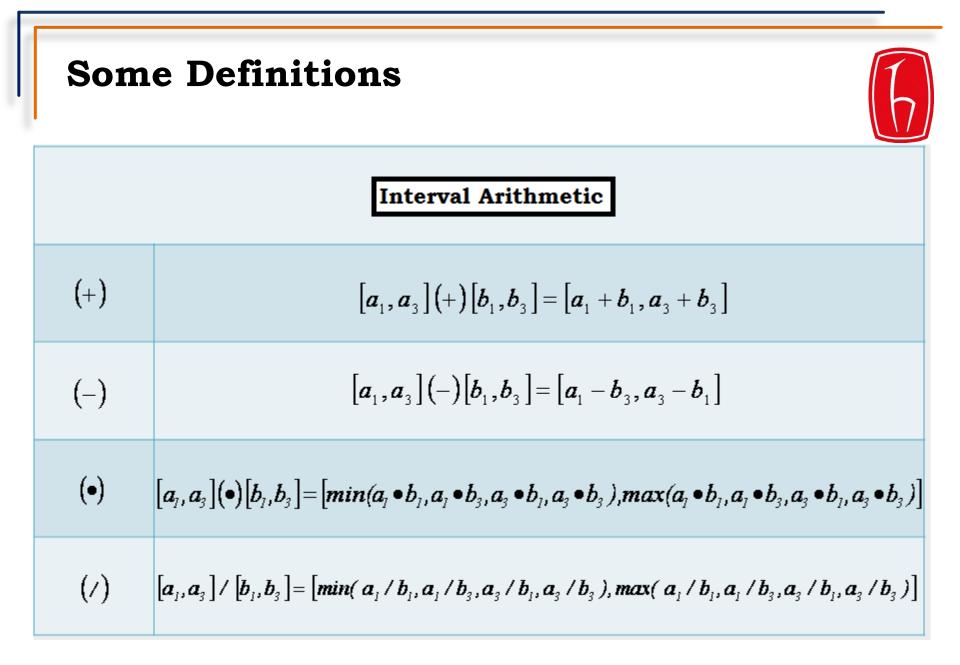
# Introduction



- Regression analysis is a statistical tool used to figure out the mathematical relation between two or more quantitative variables.
- There are many types of regression techniques in the literature. Most of these approaches are rather restrictive, and their application to real life problems requires various assumptions. Therefore new techniques have been proposed to relax some of these assumptions.
- All of these authors try to find analytical solutions for the estimators of regression parameters.
- Buckley and Abdalla [1, 2, 3] are the first practitioners of MC method into fuzzy linear regression analysis


### **Some Definitions**





A fuzzy number  $\overline{A}$  is a fuzzy subset of the real line  $\Re$ . Its membership function  $\mu_A(x)$  satisfies the following criteria:

- $\alpha$ -cut set of  $\mu_A(x)$  is a closed interval,
- $\exists x \text{ such that } \mu_A(x) = 1, \text{ and }$
- convexity such that  $\mu_A(\lambda x_1 + (1 \lambda)x_2) \ge min(\mu_A(x_1), \mu_A(x_2))$  for  $\lambda \in [0, 1]$ ,

where,  $\alpha$ -cut set contains all x elements that have a membership grade  $\mu_A(x) \ge \alpha$ .







### **Some Definitions**



\*\* The absolute value of a fuzzy number  $\bar{A} \in \Re_F$  is a function  $F: \Re_F \to \Re_F$  denoted by  $F(\bar{A}) := |\bar{A}|$  with  $\alpha$ -cut  $\bar{A}(\alpha)$ . From the interval analysis [5], it is known that if  $I = [I^-, I^+]$ , then  $|I| = [max(I^-, -I^+, 0), max(-I^-, I^+)]$ , thus the  $\alpha$ -cut of  $|\bar{A}|$  is given by

$$(|\bar{A}|)_{\alpha} = [max(\bar{A}^{-}(\alpha), -\bar{A}^{+}(\alpha), 0), max(-\bar{A}^{-}(\alpha), \bar{A}^{+}(\alpha))]$$

and hence the absolute value of a triangular fuzzy number is given as follows

$$(|\bar{A}|)_{\alpha} = \begin{cases} \bar{A}(\alpha) & \text{if } \bar{A} \ge 0\\ -\bar{A}(\alpha) & \text{if } \bar{A} \le 0\\ \{0, \max(-\bar{A}^{-}(\alpha), \bar{A}^{+}(\alpha))\} & \text{if } x \in (\bar{A}^{-}(0), \bar{A}^{+}(0)) \end{cases}$$

\*\* Omar A. AbuAarqob, Nabil T. Shawagfeh and Omar A. AbuGhneim, (2008) Functions Defined on Fuzzy Real Numbers According to Zadeh's Extension, International Mathematical Forum, 3,, no. 16, 763 - 776

### **Some Definitions**



Random crisp vectors are defined as  $v_k = (v_{0k}, \ldots, v_{mk})$ where the  $v_{ik}$  are all real numbers in intervals  $I_i, i = 0, 1, \ldots, m$ . To obtain  $v_k$ , firstly randomly crisp vectors  $v_k = (x_{1k}, x_{2k}, \ldots, x_{mk})$  with all  $x_{ik}$  in  $[0, 1], k = 1, 2, \ldots, N$  are needed to be generated. Since all  $x_{ik}$  starts out in [0, 1], it is possible to put them into  $I_i = [c_i, d_i]$  by  $v_{ik} = c_i + (d_i - c_i)x_{ik}, i = 0, 1, \ldots, m$ .

Random fuzzy vectors are defined as  $\overline{V}_k = (\overline{V}_{0k}, \ldots, \overline{V}_{mk})$ ,  $k = 1, 2, \ldots N$ , where  $\overline{V}_{ik}$  are all triangular fuzzy numbers. Firstly crisp vectors  $v_k = (x_{1k}, \ldots, x_{3m+3,k})$  with all the  $x_{ik}$  in [0, 1],  $k = 1, \ldots, N$  need to be generated. Then first three numbers in  $v_k$  are chosen and ordered from smallest to largest. If it is assumed that  $x_{3k} < x_{1k} < x_{2k}$ , the first triangular fuzzy number is  $\overline{V}_{0k} = (x_{3k}/x_{1k}/x_{2k})$ . It is possible to continue with the next three numbers in  $v_k$ , etc. making  $\overline{V}_{ik}$ ,  $i = 1, 2, \ldots, m$ . In order to obtain  $\overline{V}_{ik}$  be in certain intervals, it is supposed to be in interval  $I_i = [a_i, b_i]$ ,  $i = 0, 1, 2, \ldots, m$ . Since each  $\overline{V}_{ik}$  starts out in [0, 1] it is possible to put into  $[a_i, b_i]$  by computing  $a_i + (b_i - a_i)x_{ik}$ ,  $i = 1, 2, \ldots, m$ .



Fuzzy regression model is classified according to the type of independent and dependent variables into three cases by Choi and Buckley [8] as the following:

- (I.) Input and output data are both crisp
- (II.) Input data is crisp and output data is fuzzy

(III.) Input and output data are both fuzzy

Case-II 
$$\overline{Y}_l = \overline{A}_0 + \overline{A}_1 x_{1l} + \overline{A}_2 x_{2l} + \ldots + \overline{A}_m x_{ml}$$
  
Case-III  $\overline{Y}_l = a_0 + a_1 \overline{X}_{1l} + a_2 \overline{X}_{2l} + \ldots + a_m \overline{X}_{ml}$ 



Case-II 
$$\overline{Y}_l = \overline{A}_0 + \overline{A}_1 x_{1l} + \overline{A}_2 x_{2l} + \ldots + \overline{A}_m x_{ml}$$
  
 $\overline{Y}_{lk}^* = \overline{V}_{0k} + \overline{V}_{1k} x_{1l} + \ldots + \overline{V}_{mk} x_{ml}$ 

Case-III 
$$\overline{Y}_l = a_0 + a_1 \overline{X}_{1l} + a_2 \overline{X}_{2l} + \ldots + a_m \overline{X}_{ml}$$
  
 $\overline{Y}_{lk}^* = v_{0k} + v_{1k} \overline{X}_{1l} + \ldots, v_{mk} \overline{X}_{ml}$ 

$$\begin{split} \tilde{X}_{il} &= (x_{il1} / x_{il2} / x_{il3}) & \tilde{Y}_l &= (y_{l1} / y_{l2} / y_{l3}) \\ \tilde{Y}_l &= (y_{l1} / y_{l2} / y_{l3}) & \tilde{Y}_{lk}^* &= (y_{lk1} / y_{lk2} / y_{lk3}) \end{split}$$



$$E_{1k}(E_2) = \sum_{l=1}^n \left\{ \left[ \int_{-\infty}^{+\infty} |\tilde{Y}_l(x) - \tilde{Y}_{lk}^*(x)| d_x \right] / \left[ \int_{-\infty}^{+\infty} \tilde{Y}_l(x) d_x \right] \right\}$$

$$\begin{split} \tilde{Y}_{l} &= \left[ a \ / \ b \ / \ c \right] \\ \tilde{Y}_{l}^{\alpha} &= \left[ (b - a) \alpha + a \ ; \ -(c - b) \alpha + c \right] \end{split} \\ \tilde{Y}_{lk}^{*\alpha} &= \left\{ \left[ YY(2) - YY(1) \right] \alpha + YY(1) ; \ -[YY(3) - YY(2)] \alpha + YY(3) \right\} \end{split}$$

$$\tilde{Y}_l - \tilde{Y}^*_{lk} = \{(b-a)\alpha + a - [-[YY(3) - YY(2)]\alpha + YY(3)]; -(c-b)\alpha + c - [[YY(2) - YY(1)]\alpha + YY(1)]\}$$



$$MSE_e = \frac{1}{n} \sum_{i=1}^{n} \left[ (y_{l1} - y_{lk1})^2 + (y_{l2} - y_{lk2})^2 + (y_{l3} - y_{lk3})^2 \right]$$

$$MPE_e = \frac{1}{n} \sum_{i=1}^{n} \left[ \frac{y_{lk1} - y_{l1}}{y_{l1}} + \frac{y_{lk2} - y_{l2}}{y_{l2}} + \frac{y_{lk3} - y_{l3}}{y_{l3}} \right]$$

$$MAPE_{e} = \frac{100}{n} \sum_{i=1}^{n} \left[ \left| \frac{y_{lk1} - y_{l1}}{y_{l1}} \right| + \left| \frac{y_{lk2} - y_{l2}}{y_{l2}} \right| + \left| \frac{y_{lk3} - y_{l3}}{y_{l3}} \right| \right]$$

$$SMAPE_e = \frac{1}{n} \sum_{i=1}^{n} \left[ \frac{|y_{lk1} - y_{l1}|}{(y_{lk1} - y_{l1})/2} + \frac{|y_{lk2} - y_{l2}|}{(y_{lk2} - y_{l2})/2} + \frac{|y_{lk3} - y_{l3}|}{(y_{lk3} - y_{l3})/2} \right]$$



Intervals for Case-II and Case-III.

|                              | $I_0$      | $I_1$       | $I_2$    | $I_3$     | $I_4$       | $I_5$       |
|------------------------------|------------|-------------|----------|-----------|-------------|-------------|
| $\overline{A}_0$ (or $a_0$ ) | [0,3]      | [-2,1]      | [2, 15]  | [-12, 15] | [-3,-2]     | [-22,-4.2]  |
| $\overline{A}_1$ (or $a_1$ ) | [0,2]      | [-1,1]      | [10, 22] | [-3,27]   | [-1.756,0]  | [-28, -3.5] |
| $\overline{A}_2$ (or $a_2$ ) | [3, 4.5]   | [-2.5, 1.5] | [4, 30]  | [-45, 18] | [-4.8,-3.75 | [-18, -1]   |
| $\overline{A}_3$             | [1.2, 2.4] | [-1.2, 1.4] | [17, 35] | [-24, 28] | [-1.02,0]   | [-27, -7]   |

$$MSE_c = \frac{1}{3} \sum_{j=1}^{3} (y_{lj} - y_{lkj})^2$$

"comparison measure"

$$MAE_{c} = \frac{1}{3} \sum_{j=1}^{3} |y_{lj} - y_{lkj}|$$

Simulation results of Case-II for  $MAE_c$ .

| Error   | Coef.                                                                           | $I_0$                   | $I_1$                   | $I_2$                      |
|---------|---------------------------------------------------------------------------------|-------------------------|-------------------------|----------------------------|
|         | $A_0$                                                                           | $0.851 \ 0.934 \ 1.036$ | $1.348 \ 0.946 \ 0.776$ | 4.286 5.689 8.359          |
|         | $\frac{\overline{A}_1}{\overline{A}_2}$                                         | $1.039 \ 0.818 \ 0.631$ | 1.332 1.229 1.138       | 9.278 10.018 11.103        |
|         | $\overline{A}_2$                                                                | 4.120 $4.161$ $4.278$   | $0.634 \ 0.499 \ 0.536$ | 7.059 7.908 10.618         |
| $E_1$   | $\overline{A}_3$                                                                | 3.369 3.393 3.482       | $0.926 \ 0.924 \ 1.073$ | 19.681 20.285 22.491       |
| 121     |                                                                                 | $I_3$                   | $I_4$                   | $I_5$                      |
|         | $\overline{A}_0$                                                                | 5.756 5.756 6.038       | 3.386 3.301 3.105       | 15.581 8.988 7.693         |
|         | $\overline{A}_1$                                                                | $2.131 \ 1.671 \ 4.034$ | 2.336 2.181 2.094       | 10.873 8.669 6.406         |
|         | $\overline{A}_2$                                                                | 2.934 $3.140$ $4.187$   | $2.951 \ 2.864 \ 2.829$ | 8.210 4.038 1.898          |
|         | $\frac{\overline{A}_0}{\overline{A}_1}$ $\frac{\overline{A}_2}{\overline{A}_3}$ | 4.084 1.419 3.713       | $1.154 \ 1.342 \ 1.443$ | 10.417 7.689 5.987         |
|         |                                                                                 | $I_0$                   | $I_1$                   | $I_2$                      |
|         | $\overline{A}_0$                                                                | 0.851 0.934 1.036       | 1.348 0.946 0.776       | 4.286 5.689 8.359          |
|         | $\overline{A}_1$                                                                | 1.039 0.818 0.631       | 1.332 1.229 1.138       | 9.278 10.018 11.103        |
|         | $\overline{A}_2$                                                                | 4.120 4.161 4.278       | $0.634 \ 0.499 \ 0.536$ | 7.059 7.908 10.618         |
|         | $\frac{\overline{A}_0}{\overline{A}_1}$ $\frac{\overline{A}_2}{\overline{A}_3}$ | 3.369 3.393 3.482       | $0.926 \ 0.924 \ 1.073$ | $19.681 \ 20.284 \ 22.491$ |
| $E_2$   |                                                                                 | $I_3$                   | $I_4$                   | $I_5$                      |
|         | $\frac{\overline{A}_0}{\overline{A}_1}$ $\frac{\overline{A}_2}{\overline{A}_3}$ | 5.757 5.756 6.038       | 3.386 3.301 3.105       | 15.581 8.988 7.693         |
|         | $\overline{A}_1$                                                                | $2.131 \ 1.671 \ 4.034$ | 2.336 2.181 2.094       | 10.873 8.669 6.406         |
|         | $\overline{A}_2$                                                                | 2.934 3.140 4.187       | 2.951 2.864 2.829       | 8.210 4.038 1.898          |
|         | $\overline{A}_3$                                                                | 4.084 1.419 3.713       | $1.154 \ 1.342 \ 1.443$ | 10.417 7.689 5.987         |
|         |                                                                                 | $I_0$                   | $I_1$                   | $I_2$                      |
|         | $\frac{\overline{A}_0}{\overline{A}_1}$<br>$\overline{A}_2$                     | $0.803 \ 0.898 \ 1.042$ | 1.306 0.939 0.779       | 4.050 5.171 7.726          |
|         | $\overline{A}_1$                                                                | $1.043 \ 0.833 \ 0.590$ | $1.321 \ 1.233 \ 1.142$ | 9.264 9.862 10.792         |
|         | $\overline{A}_2$                                                                | $4.118 \ 4.154 \ 4.262$ | $0.619 \ 0.485 \ 0.473$ | 6.773 7.508 10.162         |
| MGE     | $\overline{A}_3$                                                                | 3.364 $3.385$ $3.454$   | $0.911 \ 0.900 \ 1.042$ | 19.669 20.267 22.528       |
| $MSE_e$ |                                                                                 | $I_3$                   | $I_4$                   | $I_5$                      |
|         | $\overline{A}_0$                                                                | 5.353 6.379 7.052       | 3.359 3.296 3.086       | 14.871 9.322 7.928         |
|         | $\frac{\overline{A}_0}{\overline{A}_1}$<br>$\overline{A}_2$                     | 2.741 2.217 3.063       | 2.300 2.142 2.070       | 10.740 9.234 6.755         |
|         | $\overline{A}_2$                                                                | 3.030 3.549 4.046       | 2.929 2.851 2.824       | 7.322 3.856 1.964          |
|         | $\overline{A}_3$                                                                | $3.070 \ 1.311 \ 3.828$ | $1.138 \ 1.352 \ 1.459$ | $10.062\ 7.531\ 6.122$     |





Simulation results of Case-II for  $MAE_c$  (Cont.).

| $MPE_e = \begin{matrix} \hline A_0 \\ \hline A_1 \\ \hline A_2 \\ \hline A_3 \\ \hline A_2 \\ \hline A_3 \\ \hline A_4 \\ \hline A_4 \\ \hline A_2 \\ \hline A_2 \\ \hline A_4 \\ \hline $ | Error  | Coef.            | $I_0$                    | $I_1$                   | I2                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|--------------------------|-------------------------|----------------------------|
| $ \begin{split} MPE_e & I_3 & I_4 & I_5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_0 & 7.744\ 7.270\ 8.515 & 3.708\ 3.517\ 3.360 & 18.090\ 14.424\ 11.295 \\ \hline A_1 & 5.247\ 7.617\ 12.219 & 3.449\ 3.238\ 2.949 & 25.943\ 22.565\ 18.028 \\ \hline A_2 & 25.307\ 21.951\ 19.343 & 3.346\ 3.197\ 3.078 & 10.216\ 7.264\ 4.817 \\ \hline I_2 & 25.307\ 21.951\ 19.343 & 3.346\ 3.197\ 3.078 & 10.216\ 7.264\ 4.817 \\ 19.449\ 21.508\ 23.517 & 1.572\ 1.700\ 1.743 & 14.469\ 10.900\ 8.524 \\ \hline & I_0 & I_1 & I_2 \\ \hline & I_0 & I_1 & I_2 \\ \hline & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_2 & I_1 & I_2 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 & I_1 & I_2 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 & I_2 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 & I_1 & I_2 & I_2 & I_2 & I_1 & I_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $\overline{A}_0$ | 0.922 1.089 1.160        | 2.146 1.556 1.032       | 4.465 7.279 9.744          |
| $ \begin{split} MPE_e & I_3 & I_4 & I_5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_0 & 7.744\ 7.270\ 8.515 & 3.708\ 3.517\ 3.360 & 18.090\ 14.424\ 11.295 \\ \hline A_1 & 5.247\ 7.617\ 12.219 & 3.449\ 3.238\ 2.949 & 25.943\ 22.565\ 18.028 \\ \hline A_2 & 25.307\ 21.951\ 19.343 & 3.346\ 3.197\ 3.078 & 10.216\ 7.264\ 4.817 \\ \hline I_2 & 25.307\ 21.951\ 19.343 & 3.346\ 3.197\ 3.078 & 10.216\ 7.264\ 4.817 \\ 19.449\ 21.508\ 23.517 & 1.572\ 1.700\ 1.743 & 14.469\ 10.900\ 8.524 \\ \hline & I_0 & I_1 & I_2 \\ \hline & I_0 & I_1 & I_2 \\ \hline & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_2 & I_1 & I_2 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 & I_1 & I_2 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 & I_2 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 & I_1 & I_2 & I_2 & I_2 & I_1 & I_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $\overline{A}_1$ |                          |                         |                            |
| $ \begin{split} MPE_e & I_3 & I_4 & I_5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_0 & 7.744\ 7.270\ 8.515 & 3.708\ 3.517\ 3.360 & 18.090\ 14.424\ 11.295 \\ \hline A_1 & 5.247\ 7.617\ 12.219 & 3.449\ 3.238\ 2.949 & 25.943\ 22.565\ 18.028 \\ \hline A_2 & 25.307\ 21.951\ 19.343 & 3.346\ 3.197\ 3.078 & 10.216\ 7.264\ 4.817 \\ \hline I_2 & 25.307\ 21.951\ 19.343 & 3.346\ 3.197\ 3.078 & 10.216\ 7.264\ 4.817 \\ 19.449\ 21.508\ 23.517 & 1.572\ 1.700\ 1.743 & 14.469\ 10.900\ 8.524 \\ \hline & I_0 & I_1 & I_2 \\ \hline & I_0 & I_1 & I_2 \\ \hline & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_2 & I_1 & I_2 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 & I_1 & I_2 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 \\ \hline & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_2 & I_1 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_2 & I_1 & I_2 & I_2 & I_2 & I_2 & I_1 & I_2 \\ \hline & I_3 & I_4 & I_5 & I_1 & I_2 & I_2 & I_2 & I_1 & I_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $\overline{A}_2$ |                          | $1.491 \ 1.571 \ 1.702$ | 16.537 20.074 23.419       |
| $MAPE_e \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MDE    | $\overline{A}_3$ | $3.853 \ 4.035 \ 4.120$  | $2.217 \ 2.599 \ 2.848$ | $28.592 \ 31.570 \ 33.516$ |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M P Le |                  | $I_3$                    | $I_4$                   | $I_5$                      |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\overline{A}_0$ | 7.744 7.270 8.515        | 3.708 3.517 3.360       | 18.090 14.424 11.295       |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\overline{A}_1$ | 5.247 7.617 12.219       | 3.449 3.238 2.949       | 25.943 22.565 18.028       |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\overline{A}_2$ | 25.307 21.951 19.343     | 3.346 3.197 3.078       | 10.216 7.264 4.817         |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\overline{A}_3$ | $19.449\ 21.508\ 23.517$ | $1.572 \ 1.700 \ 1.743$ | $14.469 \ 10.900 \ 8.524$  |
| $ \begin{split} MAPE_e & I_3 & I_4 & I_5 \\ \hline A_0 & 5.902\ 5.815\ 6.503 & 3.454\ 3.333\ 3.202 & 15.270\ 10.213\ 8.363 \\ \hline A_1 & 2.646\ 2.579\ 4.541 & 2.582\ 2.406\ 2.228 & 11.503\ 8.578\ 6.475 \\ \hline A_2 & 4.493\ 3.783\ 4.359 & 2.952\ 2.857\ 2.821 & 8.870\ 4.749\ 2.360 \\ \hline A_3 & 5.018\ 2.389\ 4.174 & 1.226\ 1.404\ 1.516 & 11.336\ 7.915\ 6.310 \\ \hline I_0 & I_1 & I_2 \\ \hline A_0 & 0.913\ 1.058\ 1.339 & 1.419\ 0.939\ 0.631 & 5.469\ 7.663\ 9.895 \\ \hline A_1 & 0.694\ 0.418\ 0.222 & 1.568\ 1.302\ 1.175 & 12.620\ 14.507\ 16.509 \\ \hline A_2 & 4.517\ 4.754\ 5.067 & 0.617\ 0.566\ 0.784 & 14.614\ 17.740\ 21.796 \\ \hline 3.506\ 3.622\ 3.839 & 1.064\ 1.163\ 1.304 & 25.040\ 28.222\ 31.373 \\ \hline SMAPE_e & I_3 & I_4 & I_5 \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                  | $I_0$                    | $I_1$                   | $I_2$                      |
| $ \begin{split} MAPE_e & I_3 & I_4 & I_5 \\ \hline A_0 & 5.902\ 5.815\ 6.503 & 3.454\ 3.333\ 3.202 & 15.270\ 10.213\ 8.363 \\ \hline A_1 & 2.646\ 2.579\ 4.541 & 2.582\ 2.406\ 2.228 & 11.503\ 8.578\ 6.475 \\ \hline A_2 & 4.493\ 3.783\ 4.359 & 2.952\ 2.857\ 2.821 & 8.870\ 4.749\ 2.360 \\ \hline A_3 & 5.018\ 2.389\ 4.174 & 1.226\ 1.404\ 1.516 & 11.336\ 7.915\ 6.310 \\ \hline I_0 & I_1 & I_2 \\ \hline A_0 & 0.913\ 1.058\ 1.339 & 1.419\ 0.939\ 0.631 & 5.469\ 7.663\ 9.895 \\ \hline A_1 & 0.694\ 0.418\ 0.222 & 1.568\ 1.302\ 1.175 & 12.620\ 14.507\ 16.509 \\ \hline A_2 & 4.517\ 4.754\ 5.067 & 0.617\ 0.566\ 0.784 & 14.614\ 17.740\ 21.796 \\ \hline 3.506\ 3.622\ 3.839 & 1.064\ 1.163\ 1.304 & 25.040\ 28.222\ 31.373 \\ \hline SMAPE_e & I_3 & I_4 & I_5 \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | $\overline{A}_0$ | 0.788 0.856 0.981        | $1.308 \ 0.961 \ 0.648$ | 4.428 5.870 8.551          |
| $ \begin{split} MAPE_e & I_3 & I_4 & I_5 \\ \hline A_0 & 5.902\ 5.815\ 6.503 & 3.454\ 3.333\ 3.202 & 15.270\ 10.213\ 8.363 \\ \hline A_1 & 2.646\ 2.579\ 4.541 & 2.582\ 2.406\ 2.228 & 11.503\ 8.578\ 6.475 \\ \hline A_2 & 4.493\ 3.783\ 4.359 & 2.952\ 2.857\ 2.821 & 8.870\ 4.749\ 2.360 \\ \hline A_3 & 5.018\ 2.389\ 4.174 & 1.226\ 1.404\ 1.516 & 11.336\ 7.915\ 6.310 \\ \hline I_0 & I_1 & I_2 \\ \hline A_0 & 0.913\ 1.058\ 1.339 & 1.419\ 0.939\ 0.631 & 5.469\ 7.663\ 9.895 \\ \hline A_1 & 0.694\ 0.418\ 0.222 & 1.568\ 1.302\ 1.175 & 12.620\ 14.507\ 16.509 \\ \hline A_2 & 4.517\ 4.754\ 5.067 & 0.617\ 0.566\ 0.784 & 14.614\ 17.740\ 21.796 \\ \hline 3.506\ 3.622\ 3.839 & 1.064\ 1.163\ 1.304 & 25.040\ 28.222\ 31.373 \\ \hline SMAPE_e & I_3 & I_4 & I_5 \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | $\overline{A}_1$ | $1.561 \ 1.350 \ 1.145$  | 1.623 1.361 1.223       | 9.063 9.800 11.240         |
| $ \begin{split} MAPE_e & I_3 & I_4 & I_5 \\ \hline A_0 & 5.902\ 5.815\ 6.503 & 3.454\ 3.333\ 3.202 & 15.270\ 10.213\ 8.363 \\ \hline A_1 & 2.646\ 2.579\ 4.541 & 2.582\ 2.406\ 2.228 & 11.503\ 8.578\ 6.475 \\ \hline A_2 & 4.493\ 3.783\ 4.359 & 2.952\ 2.857\ 2.821 & 8.870\ 4.749\ 2.360 \\ \hline A_3 & 5.018\ 2.389\ 4.174 & 1.226\ 1.404\ 1.516 & 11.336\ 7.915\ 6.310 \\ \hline I_0 & I_1 & I_2 \\ \hline A_0 & 0.913\ 1.058\ 1.339 & 1.419\ 0.939\ 0.631 & 5.469\ 7.663\ 9.895 \\ \hline A_1 & 0.694\ 0.418\ 0.222 & 1.568\ 1.302\ 1.175 & 12.620\ 14.507\ 16.509 \\ \hline A_2 & 4.517\ 4.754\ 5.067 & 0.617\ 0.566\ 0.784 & 14.614\ 17.740\ 21.796 \\ \hline 3.506\ 3.622\ 3.839 & 1.064\ 1.163\ 1.304 & 25.040\ 28.222\ 31.373 \\ \hline SMAPE_e & I_3 & I_4 & I_5 \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | $\overline{A}_2$ | 4.106 4.138 4.264        | $0.498 \ 0.592 \ 0.817$ | 8.957 10.375 13.032        |
| $ \begin{split} MAPE_e & I_3 & I_4 & I_5 \\ \hline A_0 & 5.902\ 5.815\ 6.503 & 3.454\ 3.333\ 3.202 & 15.270\ 10.213\ 8.363 \\ \hline A_1 & 2.646\ 2.579\ 4.541 & 2.582\ 2.406\ 2.228 & 11.503\ 8.578\ 6.475 \\ \hline A_2 & 4.493\ 3.783\ 4.359 & 2.952\ 2.857\ 2.821 & 8.870\ 4.749\ 2.360 \\ \hline A_3 & 5.018\ 2.389\ 4.174 & 1.226\ 1.404\ 1.516 & 11.336\ 7.915\ 6.310 \\ \hline I_0 & I_1 & I_2 \\ \hline A_0 & 0.913\ 1.058\ 1.339 & 1.419\ 0.939\ 0.631 & 5.469\ 7.663\ 9.895 \\ \hline A_1 & 0.694\ 0.418\ 0.222 & 1.568\ 1.302\ 1.175 & 12.620\ 14.507\ 16.509 \\ \hline A_2 & 4.517\ 4.754\ 5.067 & 0.617\ 0.566\ 0.784 & 14.614\ 17.740\ 21.796 \\ \hline 3.506\ 3.622\ 3.839 & 1.064\ 1.163\ 1.304 & 25.040\ 28.222\ 31.373 \\ \hline SMAPE_e & I_3 & I_4 & I_5 \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MADE   | $\overline{A}_3$ | 3.484 3.523 3.629        | $1.143 \ 1.231 \ 1.393$ | $19.808 \ 20.655 \ 23.022$ |
| $SMAPE_e \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAPLe  |                  | $I_3$                    | $I_4$                   | $I_5$                      |
| $SMAPE_e \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | $\overline{A}_0$ | 5.902 5.815 6.503        | 3.454 3.333 3.202       | 15.270 10.213 8.363        |
| $SMAPE_e \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | $\overline{A}_1$ | 2.646 2.579 4.541        | 2.582 2.406 2.228       | 11.503 8.578 6.475         |
| $SMAPE_e \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | $\overline{A}_2$ | 4.493 3.783 4.359        | 2.952 2.857 2.821       | 8.870 4.749 2.360          |
| $SMAPE_e \frac{\overline{A}_0}{I_3} = \begin{matrix} 0.913 \ 1.058 \ 1.339 \\ 0.694 \ 0.418 \ 0.222 \\ \overline{A}_2 \\ \overline{A}_3 \\ I_3 \end{matrix} \begin{matrix} 1.419 \ 0.939 \ 0.631 \\ 1.419 \ 0.939 \ 0.631 \\ 1.419 \ 0.939 \ 0.631 \\ 1.419 \ 0.939 \ 0.631 \\ 1.668 \ 1.302 \ 1.175 \\ 12.620 \ 14.507 \ 16.509 \\ 12.620 \ 14.507 \ 16.509 \\ 14.614 \ 17.740 \ 21.796 \\ 25.040 \ 28.222 \ 31.373 \end{matrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | $\overline{A}_3$ | 5.018 2.389 4.174        | $1.226 \ 1.404 \ 1.516$ | 11.336 7.915 6.310         |
| $\frac{A_3}{I_3} = I_1 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_2 I_2 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_5 I_2 I_2 I_5 I_2 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                  | $I_0$                    | $I_1$                   | $I_2$                      |
| $\frac{A_3}{I_3} = I_1 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_2 I_2 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_5 I_2 I_2 I_5 I_2 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | $\overline{A}_0$ | 0.913 1.058 1.339        | 1.419 0.939 0.631       | 5.469 7.663 9.895          |
| $\frac{A_3}{I_3} = I_1 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_2 I_2 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_5 I_2 I_2 I_5 I_2 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | $\overline{A}_1$ | 0.694 0.418 0.222        | $1.568 \ 1.302 \ 1.175$ | 12.620 14.507 16.509       |
| $\frac{A_3}{I_3} = I_1 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_2 I_2 I_2 I_3 I_2 I_3 I_4 I_5 I_2 I_2 I_5 I_2 I_2 I_5 I_2 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5 I_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | $\overline{A}_2$ | 4.517 4.754 5.067        | $0.617 \ 0.566 \ 0.784$ | 14.614 17.740 21.796       |
| $I_3$ $I_4$ $I_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CMADE  | $\overline{A}_3$ | 3.506 3.622 3.839        | $1.064 \ 1.163 \ 1.304$ | 25.040 28.222 31.373       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SMAPEe |                  | $I_3$                    | $I_4$                   | $I_5$                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $\overline{A}_0$ | 6.311 3.597 7.250        |                         | 16.571 12.775 9.781        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $\overline{A}_1$ |                          |                         |                            |
| $\overline{A}_3$ 10.425 3.871 5.468 1.255 1.308 1.408 18.952 14.890 11.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | $\overline{A}_2$ | 13.031 3.094 5.363       | 3.514 3.314 3.138       | 10.999 8.009 5.561         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\overline{A}_3$ | $10.425 \ 3.871 \ 5.468$ | $1.255 \ 1.308 \ 1.408$ | $18.952\ 14.890\ 11.485$   |



|         |                                                             |                            |                         | č                       |
|---------|-------------------------------------------------------------|----------------------------|-------------------------|-------------------------|
| Error   | Coef.                                                       | $I_0$                      | $I_1$                   | $I_2$                   |
|         | $\overline{A}_0$                                            | $0.915 \ 1.156 \ 1.601$    | 2.041 1.084 0.770       | 28.992 46.899 93.709    |
|         | $\overline{A}_1$                                            | $1.540 \ 1.080 \ 0.817$    | 1.800 1.518 1.298       | 87.442 102.562 128.575  |
|         | $\overline{A}_2$                                            | 16.988 17.331 18.328       | 0.492 0.322 0.562       | 54.759 72.757 129.412   |
| -       | $\overline{A}_3$                                            | $11.365 \ 11.548 \ 12.172$ | 0.871 0.892 1.232       | 387.422 412.036 507.389 |
| $E_1$   |                                                             | $I_3$                      | $I_4$                   | $I_5$                   |
|         | $\overline{A}_0$                                            | 40.414 36.512 44.080       | 11.505 10.923 9.649     | 260.225 89.469 63.315   |
|         | $\overline{A}_1$                                            | 7.311 4.999 27.971         | 5.536 4.812 4.407       | 126.779 80.511 42.360   |
|         | $\overline{A}_2$                                            | $15.628 \ 13.166 \ 19.415$ | 8.740 8.213 8.009       | 82.772 21.568 6.159     |
|         | $\overline{A}_3$                                            | 25.974 2.967 18.701        | $1.350 \ 1.842 \ 2.139$ | 121.613 62.725 36.864   |
|         |                                                             | $I_0$                      | $I_1$                   | $I_2$                   |
|         | $\overline{A}_0$                                            | 0.915 1.156 1.601          | 2.041 1.084 0.770       | 28.992 46.899 93.709    |
|         | $\overline{A}_1$                                            | 1.540 1.080 0.817          | 1.800 1.518 1.298       | 87.442 102.562 128.575  |
|         | $\frac{\overline{A}_1}{\overline{A}_2}$                     | 16.988 17.331 18.328       | $0.492 \ 0.322 \ 0.562$ | 54.759 72.757 129.412   |
| _       | $\overline{A}_3$                                            | 11.365 11.548 12.172       | 0.871 0.892 1.232       | 387.421 412.036 507.389 |
| $E_2$   |                                                             | $I_3$                      | $I_4$                   | $I_5$                   |
|         | $\overline{A}_0$                                            | 40.414 36.512 44.080       | 11.505 10.923 9.649     | 260.225 89.469 63.315   |
|         | $\frac{\overline{A}_0}{\overline{A}_1}$<br>$\overline{A}_2$ | 7.311 4.999 27.971         | 5.536 4.812 4.407       | 126.779 80.511 42.360   |
|         | $\overline{A}_2$                                            | 15.628 13.166 19.415       | 8.740 8.213 8.009       | 82.772 21.568 6.159     |
|         | $\overline{A}_3$                                            | 25.974 2.967 18.701        | $1.350\ 1.842\ 2.139$   | 121.613 62.725 36.864   |
|         |                                                             | $I_0$                      | $I_1$                   | $I_2$                   |
|         | $\overline{A}_0$                                            | 0.839 1.067 1.606          | 1.864 1.007 0.733       | 26.043 39.383 83.920    |
|         | $\overline{A}_1$                                            | 1.520 1.086 0.740          | 1.759 1.523 1.306       | 86.787 98.699 120.272   |
|         | $\frac{\overline{A}_1}{\overline{A}_2}$                     | 16.972 17.268 18.184       | $0.454 \ 0.296 \ 0.457$ | 48.139 62.361 114.398   |
|         | $\overline{A}_3$                                            | 11.330 11.490 11.975       | 0.839 0.841 1.159       | 386.928 411.306 508.555 |
| $MSE_e$ |                                                             | $I_3$                      | $I_4$                   | $I_5$                   |
|         | $\overline{A}_0$                                            | 35.701 43.290 57.721       | 11.315 10.885 9.527     | 238.789 98.453 67.920   |
|         | $\overline{A}_1$                                            | 10.439 7.122 19.404        | 5.340 4.616 4.292       | 121.004 91.898 47.290   |
|         | $\frac{\overline{A}_1}{\overline{A}_2}$                     | 17.602 15.308 17.534       | 8.600 8.136 7.979       | 64.678 19.681 5.863     |
|         | $\overline{A}_3$                                            | $17.643 \ 2.475 \ 21.396$  | $1.304 \ 1.857 \ 2.175$ | 111.155 59.617 38.222   |

#### Simulation results of Case-II for $MSE_c$ .



Simulation results of Case-II for  $MSE_c$  (Cont.).

| $MPE_{e} = \begin{matrix} \hline A_{0} & 1.027 \ 1.492 \ 1.851 \\ \hline A_{1} & 2.966 \ 2.343 \ 1.529 \\ \hline A_{2} & 21.699 \ 23.793 \ 25.660 \\ \hline 2.517 \ 2.987 \ 3.576 \\ \hline 379.315 \ 503.296 \ 627.9 \\ \hline 14.996 \ 16.414 \ 17.057 \\ \hline 5.753 \ 7.460 \ 8.572 \\ \hline 860.502 \ 1031.404 \ 1147 \\ \hline A_{2} & 14.996 \ 16.414 \ 17.057 \\ \hline 5.753 \ 7.460 \ 8.572 \\ \hline 860.502 \ 1031.404 \ 1147 \\ \hline A_{3} & I_{4} \\ \hline I_{3} & I_{4} \\ \hline I_{3} & I_{4} \\ \hline I_{5} \\ \hline 76.561 \ 67.400 \ 87.248 \\ \hline 13.826 \ 12.474 \ 11.377 \\ \hline 351.420 \ 241.841 \ 155.8 \\ \hline A_{2} \\ \hline 874.030 \ 636.206 \ 461.368 \\ \hline 11.326 \ 10.343 \ 9.577 \\ \hline 138.653 \ 85.045 \ 50.25 \\ \hline A_{3} & 415.632 \ 517.890 \ 618.216 \\ \hline 2.601 \ 2.993 \ 3.105 \\ \hline 259.960 \ 159.906 \ 98.81 \\ \hline I_{2} \\ \hline I_{3} & I_{4} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{4} \\ \hline I_{2} \\ \hline I_{5} \\ \hline I_{53} \\ \hline I_{53} \\ \hline I_{53} \\ I_{53} \\ \hline I_{53} \hline I_{53} \\ \hline I_{53} \\ \hline I_{53} \hline I_{53$                                                                                                                                                                                                                                                                                                                                             | E       | Coef.            | I                          | L                         | I.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|----------------------------|---------------------------|-----------------------------|
| $ \begin{split} MPE_e & \begin{array}{c} A_3 & \begin{array}{c} 14.996\ 16.414\ 17.057 & 5.753\ 7.460\ 8.572 & 860.502\ 1031.404\ 1147. \\ \hline I_3 & I_4 & I_5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_0 & 76.561\ 67.400\ 87.248 & 13.826\ 12.474\ 11.377 & 351.420\ 241.841\ 155.88 \\ \hline A_1 & 45.128\ 107.093\ 228.295 & 12.106\ 10.833\ 9.101 & 710.537\ 574.032\ 299.88 \\ \hline A_2 & 874.030\ 636.206\ 461.368 & 11.326\ 10.343\ 9.577 & 138.653\ 85.045\ 50.259 \\ \hline A_3 & 415.632\ 517.890\ 618.216 & 2.601\ 2.993\ 3.105 & 259.960\ 159.906\ 98.88 \\ \hline A_1 & 2.658\ 2.113\ 1.682 & 2.756\ 1.905\ 1.529 & 82.906\ 97.548\ 131.60 \\ \hline A_2 & 16.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline A_3 & 12.208\ 12.525\ 13.284 & 1.373\ 1.616\ 2.126 & 392.967\ 429.015\ 534.2 \\ \hline I_3 & I_4 & I_5 \\ \hline A_2 & 36.686\ 19.687\ 25.012 & 8.744\ 8.177\ 7.963 & 100.968\ 8.552\ 141.93 \\ \hline A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline A_3 & I_4 & I_5 \\ \hline A_0 & I_1 & I_2 \\ \hline A_1 & 0.775\ 0.359\ 0.147 & 2.604\ 1.727\ 1.396 & 171.104\ 223.411\ 283.2 \\ \hline A_2 & 20.600\ 22.808\ 25.839 & 0.534\ 0.444\ 0.892 & 269.422\ 379.326\ 532.4 \\ \hline A_3 & I_2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline A_3 & I_2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline A_2 & 286.051\ 17.092\ 52.909 & 12.421\ 11.077\ 0.924 & 297.198\ 188.286\ 113.4 \\ \hline A_2 & 286.051\ 17.092\ 52.909 & 12.421\ 11.076\ 9.944 & 143.533\ 8.792\ 50.15 \\ \hline A_3 & 3.592\ 50.15 \\ \hline A_4 & 3.592\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Error   |                  | $I_0$                      | $I_1$                     | $I_2$                       |
| $ \begin{split} MPE_e & A_3 & \frac{14.996\ 16.414\ 17.057}{I_3} & \frac{5.753\ 7.460\ 8.572}{I_4} & \frac{860.502\ 1031.404\ 1147.}{I_5} \\ \hline & I_3 & I_4 & I_5 \\ \hline & I_4 & I_5 \\ \hline & A_1 & 45.128\ 107.093\ 228.295 & 12.106\ 10.833\ 9.101 & 710.537\ 574.032\ 299.88 \\ \hline & A_2 & 874.030\ 636.206\ 461.368 & 11.326\ 10.343\ 9.577 & 138.653\ 85.045\ 50.25 \\ \hline & A_3 & 415.632\ 517.890\ 618.216 & 2.601\ 2.993\ 3.105 & 259.960\ 159.906\ 98.88 \\ \hline & I_1 & I_2 \\ \hline & I_1 & I_2 \\ \hline & I_1 & I_2 \\ \hline & A_1 & 2.658\ 2.113\ 1.682 & 2.756\ 1.905\ 1.529 & 82.906\ 97.548\ 131.60 \\ \hline & A_1 & 2.658\ 2.113\ 1.682 & 2.756\ 1.905\ 1.529 & 82.906\ 97.548\ 131.60 \\ \hline & A_2 & 16.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline & I_2 & I6.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline & I_2 & I6.866\ 19.7.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline & A_3 & I2.208\ 12.525\ 13.284 & 1.373\ 1.616\ 2.126 & 392.967\ 429.015\ 534.2 \\ \hline & I_3 & I_4 & I_5 \\ \hline & A_0 & 43.918\ 39.397\ 51.861 & 12.010\ 11.174\ 10.293 & 252.837\ 123.990\ 80.88 \\ \hline & A_1 & 11.279\ 13.875\ 40.021 & 6.941\ 6.026\ 5.088 & 145.541\ 79.114\ 43.18 \\ \hline & A_2 & 36.686\ 19.687\ 25.012 & 8.744\ 8.177\ 7.963 & 100.968\ 35.552\ 14.99 \\ \hline & A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline & A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline & A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline & A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline & A_3 & I2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline & A_3 & I2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline & A_3 & I2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline & A_3 & I2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline & A_3 & I2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline & A_3 & I2.370\ 13.246\ 67.238 & I3.351\ 12.077\ 10.924 & 297.198\ 188.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | $A_0$            | $1.027 \ 1.492 \ 1.851$    | 5.332 3.480 1.975         | 30.615 70.288 109.625       |
| $ \begin{split} MPE_e & \begin{array}{c} A_3 & \begin{array}{c} 14.996\ 16.414\ 17.057 & 5.753\ 7.460\ 8.572 & 860.502\ 1031.404\ 1147. \\ \hline I_3 & I_4 & I_5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_0 & 76.561\ 67.400\ 87.248 & 13.826\ 12.474\ 11.377 & 351.420\ 241.841\ 155.88 \\ \hline A_1 & 45.128\ 107.093\ 228.295 & 12.106\ 10.833\ 9.101 & 710.537\ 574.032\ 299.88 \\ \hline A_2 & 874.030\ 636.206\ 461.368 & 11.326\ 10.343\ 9.577 & 138.653\ 85.045\ 50.252 \\ \hline A_3 & 415.632\ 517.890\ 618.216 & 2.601\ 2.993\ 3.105 & 259.960\ 159.906\ 98.88 \\ \hline A_1 & 2.658\ 2.113\ 1.682 & 2.756\ 1.905\ 1.529 & 82.906\ 97.548\ 131.60 \\ \hline A_2 & 16.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline A_3 & 12.208\ 12.525\ 13.284 & 1.373\ 1.616\ 2.126 & 392.967\ 429.015\ 534.2 \\ \hline I_3 & I_4 & I_5 \\ \hline A_2 & 36.686\ 19.687\ 25.012 & 8.744\ 8.177\ 7.963 & 100.968\ 8.552\ 141.93 \\ \hline A_2 & 36.686\ 19.687\ 25.012 & 8.744\ 8.177\ 7.963 & 100.968\ 8.552\ 141.93 \\ \hline A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline A_3 & I_4 & I_5 \\ \hline A_0 & I_1 & I_2 \\ \hline A_1 & 0.775\ 0.359\ 0.147 & 2.604\ 1.727\ 1.396 & 171.104\ 223.411\ 283.2 \\ \hline A_2 & 20.600\ 22.808\ 25.839 & 0.534\ 0.444\ 0.892 & 269.422\ 379.326\ 532.4 \\ \hline A_3 & I_2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline A_1 & 0.761\ 28.492\ 178.53 & 8.522\ 6.599\ 5.445 & 346.732\ 199.206\ 124.4 \\ \hline A_2 & 286.051\ 17.092\ 52.909 & 12.421\ 11.076\ 9.944 & 143.533\ 8.792\ 50.15 \\ \hline A_1 & 10.761\ 28.492\ 178.53 & 8.522\ 6.599\ 5.445 & 346.732\ 199.206\ 124.4 \\ \hline A_2 & 286.051\ 17.092\ 52.909 & 12.421\ 11.076\ 9.944 & 143.533\ 8.792\ 50.15 \\ \hline A_1 & 10.761\ 28.492\ 178.353 & 8.522\ 6.599\ 5.445 & 346.732\ 199.206\ 124.4 \\ \hline A_2 & 286.051\ 17.092\ 52.909 & 12.421\ 11.076\ 9.944 & 143.533\ 8.792\ 50.15 \\ \hline A_1 & 35.561\ 12.491\ 143.551\ 12.491\ 143.551\ 12.491\ 143.551\ 12.491\ 143.551\ 12.491\ 143.551\ 12.491\ 143.551\ 12.491\ 143.551\ 12.491\ 143.551\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | $\overline{A_1}$ |                            |                           | 110.021 158.699 230.036     |
| $ \begin{split} MPE_e & \begin{array}{c} A_3 & \begin{array}{c} 14.996\ 16.414\ 17.057 & 5.753\ 7.460\ 8.572 & 860.502\ 1031.404\ 1147. \\ \hline I_3 & I_4 & I_5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_0 & 76.561\ 67.400\ 87.248 & 13.826\ 12.474\ 11.377 & 351.420\ 241.841\ 155.88 \\ \hline A_1 & 45.128\ 107.093\ 228.295 & 12.106\ 10.833\ 9.101 & 710.537\ 574.032\ 299.88 \\ \hline A_2 & 874.030\ 636.206\ 461.368 & 11.326\ 10.343\ 9.577 & 138.653\ 85.045\ 50.259 \\ \hline A_3 & 415.632\ 517.890\ 618.216 & 2.601\ 2.993\ 3.105 & 259.960\ 159.906\ 98.88 \\ \hline A_1 & 2.658\ 2.113\ 1.682 & 2.756\ 1.905\ 1.529 & 82.906\ 97.548\ 131.60 \\ \hline A_2 & 16.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline A_2 & 16.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline A_2 & 16.869\ 17.139\ 18.231 & 0.334\ 0.451\ 0.872 & 106.546\ 149.771\ 220.5 \\ \hline I_3 & I_4 & I_5 \\ \hline A_2 & 36.686\ 19.687\ 25.012 & 8.744\ 8.177\ 7.963 & 100.968\ 8.552\ 14.19 \\ \hline A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline A_3 & 43.116\ 12.747\ 29.355 & 1.547\ 2.043\ 2.375 & 147.821\ 69.402\ 41.94 \\ \hline A_3 & I_2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.9 \\ \hline A_1 & 0.775\ 0.359\ 0.147 & 2.604\ 1.727\ 1.396 & 171.104\ 223.411\ 283.2 \\ \hline A_2 & 20.600\ 22.808\ 25.839 & 0.534\ 0.444\ 0.892 & 269.422\ 379.326\ 532.4 \\ \hline A_3 & I_2.370\ 13.236\ 14.881 & 1.181\ 1.438\ 1.831 & 652.037\ 827.301\ 100.1 \\ \hline A_3 & I_2 & I_3 & I_4 & I_5 \\ \hline A_4 & I_5 & I_3 & I_2 & I_3 & I_4 & I_5 \\ \hline A_4 & I_2 & I_3 & I_4 & I_5 & I_3.731\ 10.101.112 \\ \hline A_4 & I_5 & I_3 & I_4 & I_5 & I_3.731\ 10.101.112 \\ \hline A_4 & I_5 & I_3 & I_4 & I_5 & I_3.731\ 10.101.112 \\ \hline A_4 & I_5 & I_3 & I_4 & I_5 & I_3.731\ 10.101.112 \\ \hline A_4 & I_5 & I_3 & I_3.731\ 12.771\ 10.924 & 297.198\ 188.286\ 113.44 \\ \hline A_4 & I_5 & I_3 & I_3.751\ 12.771\ 10.924 & 297.198\ 188.286\ 113.44 \\ \hline A_4 & I_5 & I_3 & I_3.792\ 10.111.1076 & I_3.192\ I1.1076 & I_3.43\ I1.331\ I_3.792\ I1.10.761\ I1.433\ I1.2370\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | $A_2$            |                            | 2.517 2.987 3.576         | 379.315 503.296 627.930     |
| $MAPE_{e} \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MDE     | $A_3$            | $14.996 \ 16.414 \ 17.057$ | 5.753 7.460 8.572         | 860.502 1031.404 1147.233   |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MI De   |                  | I <sub>3</sub>             | $I_4$                     | $I_5$                       |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | $\overline{A}_0$ | 76.561 67.400 87.248       | 13.826 12.474 11.377      | 351.420 241.841 155.800     |
| $MAPE_e \\ SMAPE_e \\ SMAPE_e \\ SMAPE_e \\ MAPE_e $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | $\overline{A}_1$ | 45.128 107.093 228.295     | 12.106 10.833 9.101       | 710.537 574.032 399.856     |
| $MAPE_{e} = \begin{matrix} I_{0} & I_{1} & I_{2} \\ 0.757 \ 0.961 \ 1.403 & 2.009 \ 1.158 \ 0.581 & 29.651 \ 49.680 \ 95.043 \\ \hline A_{1} & 2.658 \ 2.113 \ 1.682 & 2.756 \ 1.905 \ 1.529 & 82.906 \ 97.548 \ 131.600 \\ \hline A_{2} & 16.869 \ 17.139 \ 18.231 & 0.334 \ 0.451 \ 0.872 & 106.546 \ 149.771 \ 220.5 \\ 12.208 \ 12.525 \ 13.284 & 1.373 \ 1.616 \ 2.126 & 392.967 \ 429.015 \ 534.2 \\ \hline I_{3} & I_{4} & I_{5} \\ \hline I_{3} & I_{4} & I_{5} \\ \hline I_{3} & I_{4} & I_{5} \\ \hline I_{4} & 11.279 \ 13.875 \ 40.021 & 6.941 \ 6.026 \ 5.088 & 145.541 \ 79.114 \ 43.18 \\ \hline A_{2} & 36.686 \ 19.687 \ 25.012 & 8.744 \ 8.177 \ 7.963 & 100.968 \ 35.562 \ 14.19 \\ \hline A_{3} & 43.116 \ 12.747 \ 29.355 & 1.547 \ 2.043 \ 2.375 & 147.821 \ 69.402 \ 41.94 \\ \hline I_{4} & 0.775 \ 0.359 \ 0.147 & 2.604 \ 1.727 \ 1.396 & 171.104 \ 223.411 \ 283.2 \\ \hline I_{3} & I_{4} & I_{5} \\ \hline I_{4} & 0.775 \ 0.359 \ 0.147 & 2.604 \ 1.727 \ 1.396 & 171.104 \ 223.411 \ 283.2 \\ \hline I_{3} & I_{4} & I_{5} \\ \hline I_{4} & I_{5} \\ \hline I_{4} & I_{5} \\ \hline I_{5} & I_{5} & I_{5} & I_{5} & I_{5} \\ \hline I_{5} & I_{5} & I_{5} & I_{5} & I_{5} & I_{5} \\ \hline I_{5} & I_{5} \\ \hline I_{5} & I_{5} & I_{5} & I_{5} & I_{5} & I_{5} & I_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | $\overline{A}_2$ | 874.030 636.206 461.368    | 11.326 10.343 9.577       | 138.653 85.045 50.251       |
| $MAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | $\overline{A}_3$ | 415.632 517.890 618.216    | $2.601 \ 2.993 \ 3.105$   | 259.960 159.906 98.891      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                  | $I_0$                      | $I_1$                     | $I_2$                       |
| $ \begin{split} MAPE_e & I_3 & I_4 & I_5 \\ \hline A_0 & 43.918 \ 39.397 \ 51.861 & 12.010 \ 11.174 \ 10.293 & 252.837 \ 123.990 \ 80.88 \\ \hline A_1 & 11.279 \ 13.875 \ 40.021 & 6.941 \ 6.026 \ 5.088 & 145.541 \ 79.114 \ 43.18 \\ \hline A_2 & 36.686 \ 19.687 \ 25.012 & 8.744 \ 8.177 \ 7.963 & 100.968 \ 35.562 \ 14.19 \\ \hline A_3 & 43.116 \ 12.747 \ 29.355 & 1.547 \ 2.043 \ 2.375 & 147.821 \ 69.402 \ 41.94 \\ \hline A_3 & 43.116 \ 12.747 \ 29.355 & 1.547 \ 2.043 \ 2.375 & 147.821 \ 69.402 \ 41.94 \\ \hline A_1 & 0.775 \ 0.359 \ 0.147 & 2.604 \ 1.727 \ 1.396 & 171.104 \ 223.411 \ 283.2 \\ \hline A_2 & 20.600 \ 22.808 \ 25.839 & 0.534 \ 0.444 \ 0.892 & 269.422 \ 379.326 \ 532.4 \\ \hline A_2 & 20.600 \ 22.808 \ 25.839 & 0.534 \ 0.444 \ 0.892 & 269.422 \ 379.326 \ 532.4 \\ \hline A_3 & 12.370 \ 13.236 \ 14.881 & 1.181 \ 1.438 \ 1.831 & 652.037 \ 827.301 \ 1010.3 \\ \hline A_1 & 0.761 \ 28.492 \ 178.353 & 8.522 \ 6.599 \ 5.445 & 346.732 \ 199.206 \ 124.4 \\ \hline A_2 & 286.051 \ 17.092 \ 52.909 & 12.421 \ 11.076 \ 9.944 & 143.533 \ 87.925 \ 50.15 \\ \hline A_3 & 50.42 \ A_3 & 50.44 \ A_3 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | $\overline{A}_0$ | 0.757 0.961 1.403          | 2.009 1.158 0.581         | 29.651 49.680 95.049        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | $\overline{A}_1$ | 2.658 2.113 1.682          | 2.756 1.905 1.529         | 82.906 97.548 131.604       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | $\overline{A}_2$ | 16.869 17.139 18.231       | $0.334 \ 0.451 \ 0.872$   | 106.546 149.771 220.593     |
| $SMAPE_{e} = \frac{I_{3} \qquad I_{4} \qquad I_{5}}{I_{4}}$ $\frac{I_{6}}{A_{1}} \qquad \frac{I_{3} \qquad I_{4} \qquad I_{5}}{I_{23,990,80,84}}$ $\frac{I_{6}}{A_{1}} \qquad \frac{I_{1,279,13,875,40,021}{I_{1,279,13,875,40,021}} \qquad 6.941,6.026,5.088 \qquad 145.541,79,114,43,188}{I_{42}}$ $\frac{I_{6}}{A_{3}} \qquad 36.686,19.687,25.012 \qquad 8.744,8.177,7.963 \qquad 100.968,35.562,14.199}{I_{33},43,116,12,747,29,355} \qquad 1.547,2.043,2.375 \qquad 147.821,69.402,41.94}$ $\frac{I_{0}}{I_{1}} \qquad I_{1} \qquad I_{2}$ $\frac{I_{0}}{I_{1}} \qquad I_{2}$ $\frac{I_{0}}{I_{1}} \qquad I_{1} \qquad I_{2}$ $\frac{I_{0}}{I_{1}} \qquad I_{2}$ $\frac{I_{0}}{I_{2}} \qquad I_{2}$ $I_{1} \qquad I_{2}$ $\frac{I_{0}}{I_{2}} \qquad I_{2}$ $I_{1} \qquad I_{2}$ $I_{2} \qquad I_{2}$ $I_{1} \qquad I_{2}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{1} \qquad I_{2}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{1} \qquad I_{2}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{1} \qquad I_{2}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{1} \qquad I_{2}$ $I_{2} \qquad I_{2}$ $I_{1} \qquad I_{2}$ $I_{3} \qquad I_{4} \qquad I_{2}$ $I_{3} \qquad I_{4} \qquad I_{5}$ $I_{3}$ $I_{4} \qquad I_{5}$ $I_{3} \qquad I_{4}$ $I_{4} \qquad I_{5}$ $I_{4} \qquad I_{5}$ $I_{4} \qquad I_{5}$ $I_{4} \qquad I_{4} \qquad I_{4} \qquad I_{4} \qquad I_{5}$ $I_{4} \qquad I_{4} \qquad I_{4} \qquad I_{5}$ $I_{4} \qquad I_{4} \qquad I_{5}$ $I_{4} \qquad I_{4} \qquad I_{4} \qquad I_{5}$ $I_{4} \qquad I_{4} \qquad I_{5} \qquad I_{4} \qquad I_{4} \qquad I_{4} \qquad I_{4} \qquad I_{5} \qquad I_{4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MADE    | $\overline{A}_3$ | 12.208 12.525 13.284       | $1.373 \ 1.616 \ 2.126$   | 392.967 429.015 534.298     |
| $SMAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAPEe   |                  | $I_3$                      | $I_4$                     | $I_5$                       |
| $SMAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | $\overline{A}_0$ | 43.918 39.397 51.861       | 12.010 11.174 10.293      | 252.837 123.990 80.857      |
| $SMAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | $\overline{A}_1$ | 11.279 13.875 40.021       | 6.941 6.026 5.088         | $145.541 \ 79.114 \ 43.186$ |
| $SMAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | $\overline{A}_2$ | 36.686 19.687 25.012       | 8.744 8.177 7.963         | 100.968 35.562 14.196       |
| $SMAPE_{e} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | $\overline{A}_3$ | 43.116 12.747 29.355       | 1.547 2.043 2.375         | 147.821 69.402 41.943       |
| $ \begin{array}{c} SMAPE_{e} \\ \hline A_{3} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} $    |         |                  | $I_0$                      | $I_1$                     | $I_2$                       |
| $ \begin{array}{c} SMAPE_{e} \\ \hline A_{3} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \hline I_$ |         | $\overline{A}_0$ | 1.044 1.479 2.175          | 2.422 1.157 0.557         | 42.615 73.014 109.601       |
| $ \begin{array}{c} SMAPE_{e} \\ \hline A_{3} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \hline I_$ |         | $\overline{A}_1$ | $0.775 \ 0.359 \ 0.147$    | 2.604 1.727 1.396         | 171.104 223.411 283.245     |
| $ \begin{array}{c} SMAPE_{e} \\ \hline A_{3} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{3} \\ \hline I_{4} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \\ \hline I_{5} \hline I_{5} \\ \hline I_{5} \hline I_$ |         | $\overline{A}_2$ | 20.600 22.808 25.839       | $0.534 \ 0.444 \ 0.892$   | 269.422 379.326 532.499     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH A DE | $\overline{A}_3$ | 12.370 13.236 14.881       | $1.181 \ 1.438 \ 1.831$   | 652.037 827.301 1010.590    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SMAPEe  |                  | $I_3$                      | $I_4$                     | $I_5$                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | $\overline{A}_0$ | 52.589 20.186 67.238       |                           | 297.198 188.286 113.476     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | $\overline{A}_1$ |                            |                           | 346.732 199.206 124.402     |
| $\overline{A}_3$ 136.576 24.055 66.821 1.642 1.809 2.096 386.544 251.038 156.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | $\overline{A}_2$ | 286.051 17.092 52.909      | $12.421 \ 11.076 \ 9.944$ | 143.533 87.925 50.159       |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | $\overline{A}_3$ | 136.576 24.055 66.821      | 1.642 1.809 2.096         | 386.544 251.038 156.263     |



|            | ~                       | i di di di di di                                       | 1 10001                                                | 00 01 00                  |                                                        |                                                        | $L_c$ .                     |
|------------|-------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Error      | Coef.                   | $I_0$                                                  | $I_1$                                                  | $I_2$                     | $I_3$                                                  | $I_4$                                                  | $I_5$                       |
| E1         | $a_0$<br>$a_1$<br>$a_2$ | $\begin{array}{c} 0.883 \\ 1.098 \\ 4.003 \end{array}$ | $\begin{array}{c} 0.812 \\ 1.252 \\ 1.387 \end{array}$ | $3.162 \\ 8.144 \\ 5.126$ | $\begin{array}{c} 0.719 \\ 0.501 \\ 0.825 \end{array}$ | $\begin{array}{c} 1.175 \\ 2.019 \\ 2.757 \end{array}$ | 5.533<br>5.657<br>0.483     |
| E2         | $a_0 \\ a_1 \\ a_2$     | $\begin{array}{c} 0.883 \\ 1.098 \\ 4.003 \end{array}$ | $\begin{array}{c} 0.812 \\ 1.252 \\ 1.387 \end{array}$ | $3.162 \\ 8.144 \\ 5.126$ | $\begin{array}{c} 0.719 \\ 0.501 \\ 0.825 \end{array}$ | $1.175 \\ 2.019 \\ 2.757$                              | 5.533<br>5.657<br>0.483     |
| $MSE_e$    | $a_0$<br>$a_1$<br>$a_2$ | $\begin{array}{c} 0.841 \\ 1.139 \\ 4.002 \end{array}$ | $\begin{array}{c} 0.774 \\ 1.229 \\ 1.420 \end{array}$ | $2.980 \\ 8.137 \\ 5.136$ | $\begin{array}{c} 0.689 \\ 0.508 \\ 0.872 \end{array}$ | $1.037 \\ 2.015 \\ 2.756$                              | $5.532 \\ 5.658 \\ 0.451$   |
| $MPE_e$    | $a_0$<br>$a_1$<br>$a_2$ | $1.478 \\ 1.795 \\ 4.516$                              | $1.429 \\ 2.276 \\ 1.601$                              | 7.903<br>9.255<br>13.837  | $13.036 \\ 8.530 \\ 17.634$                            | 2.372<br>2.657<br>2.973                                | $13.708 \\ 14.616 \\ 3.509$ |
| $MAPE_{e}$ | $a_0$<br>$a_1$<br>$a_2$ | $1.082 \\ 1.609 \\ 4.006$                              | $\begin{array}{c} 0.949 \\ 1.130 \\ 0.823 \end{array}$ | $3.764 \\ 8.397 \\ 5.117$ | $\begin{array}{c} 0.978 \\ 0.531 \\ 0.692 \end{array}$ | $1.609 \\ 2.056 \\ 2.764$                              | 5.815<br>5.707<br>0.593     |
| $SMAPE_e$  | $a_0 \\ a_1 \\ a_2$     | $1.017 \\ 0.145 \\ 4.315$                              | $0.926 \\ 1.263 \\ 1.172$                              | $5.447 \\ 9.759 \\ 6.162$ | $\begin{array}{c} 0.938 \\ 0.865 \\ 0.915 \end{array}$ | $1.680 \\ 2.453 \\ 3.008$                              | $11.497 \\ 9.805 \\ 9.135$  |

#### Simulation results of Case-III for $MAE_c$ .



|           | 0                       | maaa                                                    | on resu                    | 10 01 04                                                   | SC-111 101                                                 | MOL                       | ·c•                             |
|-----------|-------------------------|---------------------------------------------------------|----------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------|---------------------------------|
| Error     | Coef.                   | $I_0$                                                   | $I_1$                      | $I_2$                                                      | $I_3$                                                      | $I_4$                     | $I_5$                           |
| E1        | $a_0$<br>$a_1$<br>$a_2$ | $1.002 \\ 1.503 \\ 16.024$                              | $1.005 \\ 1.506 \\ 16.025$ | $13.280 \\ 66.337 \\ 26.286$                               | 59.308<br>26.324<br>292.011                                | $2.292 \\ 4.079 \\ 7.601$ | $30.557 \\ 32.006 \\ 0.354$     |
| E2        | $a_0 \\ a_1 \\ a_2$     | $1.002 \\ 1.503 \\ 16.024$                              | $1.005 \\ 1.506 \\ 16.025$ | 13.280<br>66.337<br>26.286                                 | 59.308<br>26.324<br>292.011                                | $2.292 \\ 4.079 \\ 7.601$ | 30.557<br>32.006<br>0.354       |
| $MSE_e$   | $a_0$<br>$a_1$<br>$a_2$ | $\begin{array}{c} 0.889 \\ 1.513 \\ 16.017 \end{array}$ | 0.891<br>1.517<br>16.018   | $10.950 \\ 66.221 \\ 26.386$                               | $\begin{array}{c} 43.481 \\ 26.414 \\ 291.914 \end{array}$ | $1.806 \\ 4.060 \\ 7.596$ | $30.531 \\ 32.014 \\ 0.276$     |
| $MPE_e$   | $a_0$<br>$a_1$<br>$a_2$ | $2.446 \\ 3.530 \\ 20.881$                              | $2.449 \\ 3.530 \\ 20.882$ | 100.537<br>96.317<br>338.231                               | $170.782 \\ 318.457 \\ 615.259$                            | 7.879<br>7.729<br>9.001   | 259.572<br>346.371<br>55.171    |
| $MAPE_e$  | $a_0$<br>$a_1$<br>$a_2$ | $1.470 \\ 2.909 \\ 16.052$                              | $1.473 \\ 2.913 \\ 16.052$ | $26.526 \\ 71.604 \\ 26.332$                               | 98.067<br>28.301<br>293.124                                | $4.168 \\ 4.265 \\ 7.641$ | $35.910 \\ 32.599 \\ 1.978$     |
| $SMAPE_e$ | $a_0 \\ a_1 \\ a_2$     | $1.389 \\ 0.118 \\ 18.865$                              | $1.385 \\ 0.118 \\ 18.865$ | $\begin{array}{c} 45.644 \\ 104.065 \\ 43.149 \end{array}$ | $81.992 \\ 104.777 \\ 411.546$                             | $4.366 \\ 6.314 \\ 9.203$ | $170.156 \\ 134.537 \\ 111.423$ |

#### Simulation results of Case-III for $MSE_c$ .

# Application

Case-II  $\overline{Y}_l = \overline{A}_0 + \overline{A}_1 x_{1l} + \overline{A}_2 x_{2l} + \ldots + \overline{A}_m x_{ml}$ 

| Fuzzy Output       | x <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> |
|--------------------|----------------|----------------|----------------|
| (2.27/5.83/9.39)   | 2.00           | 0.00           | 15.25          |
| (0.33/0.85/1.37)   | 0.00           | 5.00           | 14.13          |
| (5.43/13.93/22.43) | 1.13           | 1.50           | 14.13          |
| (1.56/4.00/6.44)   | 2.00           | 1.25           | 13.63          |
| (0.64/1.65/2.66)   | 2.19           | 3.75           | 14.75          |
| (0.62/1.58/2.54)   | 0.25           | 3.50           | 13.75          |
| (3.19/8.18/13.17)  | 0.75           | 5.25           | 15.25          |
| (0.72/1.85/2.98)   | 4.25           | 2.00           | 13.50          |

The intervals for  $I_i$ , i = 0, 1, 2, 3 for Case-II.

|       | MCI          | MCII         | MCIII             | MCIV             |
|-------|--------------|--------------|-------------------|------------------|
| $I_0$ | [-1,0]       | [0,1]        | [-18.174,-18.174] | [28.000,47.916]  |
| $I_1$ | [-1,0]       | [-1,0]       | [-1.083, -1.083]  | [-2.542, -2.542] |
| $I_2$ | [-1.5, -0.5] | [-1.5, -0.5] | [-1.500, -1.500]  | [-2.333, -2.333] |
| $I_3$ | [0,1]        | [0,1]        | [1.733, 2.149]    | [-1.354, -1.354] |



# Application



Case-II  $\overline{Y}_l = \overline{A}_0 + \overline{A}_1 x_{1l} + \overline{A}_2 x_{2l} + \ldots + \overline{A}_m x_{ml}$ 

Estimates of coefficients under MCI-MCII-MCIII-MCIV setting for Case-II.

|       |                                      | $\overline{A}_0$                                                                                                                | $\overline{A}_1$                                                                             | $\overline{A}_2$                                                                             | $\overline{A}_3$                                                                                                                |
|-------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| MCI   | $E_1$<br>$E_2$<br>$MSE_e$<br>$MPE_e$ | -0.654 -0.163 -0.139<br>-0.754 -0.548 -0.421<br>-0.712 -0.672 -0.611<br>-0.938 -0.836 -0.251                                    | -0.285 -0.228 -0.133<br>-0.802 -0.786 -0.684<br>-0.934 -0.928 -0.887<br>-0.950 -0.810 -0.492 | -0.643 -0.555 -0.543<br>-1.323 -1.265 -1.251<br>-1.202 -1.139 -1.035<br>-1.426 -1.349 -1.016 | $\begin{array}{c} 0.304 \ 0.317 \ 0.321 \\ 0.548 \ 0.566 \ 0.661 \\ 0.613 \ 0.758 \ 0.801 \\ 0.010 \ 0.042 \ 0.066 \end{array}$ |
| MCII  | $E_1$<br>$E_2$<br>$MSE_e$<br>$MPE_e$ | $\begin{array}{c} 0.061 \ 0.316 \ 0.341 \\ 0.767 \ 0.901 \ 0.923 \\ 0.210 \ 0.262 \ 0.937 \\ 0.062 \ 0.164 \ 0.749 \end{array}$ | -0.271 -0.268 -0.129<br>-0.604 -0.430 -0.145<br>-0.970 -0.882 -0.771<br>-0.950 -0.891 -0.492 | -0.822 -0.727 -0.721<br>-1.096 -1.083 -1.015<br>-1.285 -1.245 -0.998<br>-1.426 -1.349 -1.016 | $\begin{array}{c} 0.259 \ 0.294 \ 0.336 \\ 0.355 \ 0.367 \ 0.517 \\ 0.530 \ 0.629 \ 0.686 \\ 0.010 \ 0.042 \ 0.066 \end{array}$ |
| MCIII | $E_1$<br>$E_2$<br>$MSE_e$<br>$MPE_e$ | -18.174 -18.174 -18.174<br>-18.174 -18.174 -18.174<br>-18.174 -18.174 -18.174<br>-18.174 -18.174 -18.174                        | -1.083 -1.083 -1.083<br>-1.083 -1.083 -1.083<br>-1.083 -1.083 -1.083<br>-1.083 -1.083 -1.083 | -1.500 -1.500 -1.500<br>-1.500 -1.500 -1.500<br>-1.500 -1.500 -1.500<br>-1.500 -1.500 -1.500 | 1.875 1.876 1.879<br>1.823 1.888 1.960<br>1.904 2.015 2.119<br>1.736 1.739 1.741                                                |
| MCIV  | $E_1 \\ E_2 \\ MSE_e \\ MPE_e$       | $30.645 \ 30.645 \ 30.658 \ 31.102 \ 35.335 \ 36.042 \ 31.013 \ 35.597 \ 36.814 \ 28.168 \ 28.168 \ 28.664$                     | -2.542 -2.542 -2.542<br>-2.542 -2.542 -2.542<br>-2.542 -2.542 -2.542<br>-2.542 -2.542 -2.542 | -2.333 -2.333 -2.333<br>-2.333 -2.333 -2.333<br>-2.333 -2.333 -2.333<br>-2.333 -2.333 -2.333 | -1.354 -1.354 -1.354<br>-1.354 -1.354 -1.354<br>-1.354 -1.354 -1.354<br>-1.354 -1.354 -1.354                                    |

 $\overline{A}_0 = (-0.710/ - 0.539/ - 0.524) \quad \overline{A}_2 = (-1.090/ - 1.089/ - 1.088)$  $\overline{A}_1 = (-0.610/ - 0.473/ - 0.472) \quad \overline{A}_3 = (0.459/0.487/0.68)$ 

# **Application** Case-II $\overline{Y}_l = \overline{A}_0 + \overline{A}_1 x_{1l} + \overline{A}_2 x_{2l} + \ldots + \overline{A}_m x_{ml}$



|                  | Comparison of error measures in the application (Case-II). |              |             |             |                       |             |                 |             |                  |             |                  |
|------------------|------------------------------------------------------------|--------------|-------------|-------------|-----------------------|-------------|-----------------|-------------|------------------|-------------|------------------|
|                  | MCI MCII MCIII MCIV                                        |              |             |             |                       |             |                 |             |                  |             |                  |
| Error            | [18]                                                       | [20]         | [14]        | [3]         | MC                    | [3]         | MC              | [3]         | MC               | [3]         | MC               |
| $E_1$            | 53.82                                                      | 48.79        | 16.98       | 6.17        | 9.00                  | 5.81        | 9.49            | 7.13        | 6.83             | 8.20        | 7.34             |
| $E_2$<br>$MSE_e$ | 143.45<br>NA                                               | 131.83<br>NA | 70.99<br>NA | 64.89<br>NA | $\frac{63.26}{27.18}$ | 63.59<br>NA | $64.06 \\ 1.78$ | 66.46<br>NA | $66.42 \\ 26.23$ | 94.09<br>NA | $94.26 \\ 41.03$ |
| $MPE_{e}$        | NA                                                         | NA           | NA          | NA          | -3.30                 | NA          | -2.88           | NA          | -0.81            | NA          | -1.70            |

| Applica  | tion                                        |                                          |                      | 1                        |
|----------|---------------------------------------------|------------------------------------------|----------------------|--------------------------|
| Case-III | $\overline{Y}_l = a_0 + a_1 \overline{Y}_l$ | $\overline{X}_{1l} + a_2 \overline{X}_2$ | $a_l + \ldots + a_r$ | $_{n} \overline{X}_{ml}$ |
|          | Fuzzy Output                                | $\overline{X}_{1}$                       | $\overline{X}_2$     |                          |
|          | (55.4/61.6/64.7)                            | (5.7/6.0/6.9)                            | (5.4/6.3/7.1)        |                          |
|          | (50.5/53.2/58.5)                            | (4.0/4.4/5.1)                            | (4.7/5.5/5.8)        |                          |
|          | (55.7/65.5/75.3)                            | (8.6/9.1/9.8)                            | (3.4/3.6/4.0)        |                          |
|          | (61.7/64.9/74.7)                            | (6.9/8.1/9.3)                            | (5.0/5.8/6.7)        |                          |
|          | (69.1/72.7/80.0)                            | (8.7/9.4/11.2)                           | (6.5/6.8/7.1)        |                          |
|          | (49.6/52.2/57.4)                            | (4.6/4.8/5.5)                            | (6.7/7.9/8.7)        |                          |
|          | (47.7/50.2/55.2)                            | (7.2/7.6/8.7)                            | (4.0/4.2/4.8)        |                          |
|          | (41.8/44.0/48.4)                            | (4.2/4.4/4.8)                            | (5.4/6.0/6.3)        |                          |
|          | (45.7/53.8/61.9)                            | (8.2/9.1/10.0)                           | (2.7/2.8/3.2)        |                          |
|          | (45.4/53.5/58.9)                            | (6.0/6.7/7.4)                            | (5.7/6.7/7.7)        |                          |
|          | The interva                                 | als for $I_i$ , $i = 0, 1, 2$            | 2 for Case-III.      | _                        |
|          | MCI MCII                                    | MCIII                                    | MCIV                 |                          |
|          | $I_0$ [0,5] [0,37] [                        | [16.528,16.528]                          | [33.808,36.601]      | _                        |
|          | $I_1$ [0,6] [0,6]                           | [3.558, 3.982]                           | [1.294, 3.765]       |                          |
|          | $I_2$ [0,4] [0,6]                           | [2.575, 2.575]                           | [0.473, 0.473]       | _                        |



Estimates of coefficients under MCI-MCIII-MCIV setting for Case-III.

|       |                                | $a_0$                                                             | $a_1$                                                           | $a_2$                                                                                             |
|-------|--------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| MCI   | $E_1 \\ E_2 \\ MSE_e \\ MPE_e$ | 2.657<br>4.849<br>4.919<br>0.379                                  | 0.013<br>4.882<br>4.642<br>0.027                                | $\begin{array}{c} 0.006 \\ 3.198 \\ 3.544 \\ 0.055 \end{array}$                                   |
| MCII  | $E_1\\E_2\\MSE_e\\MPE_e$       | $\begin{array}{c} 19.661 \\ 9.970 \\ 14.540 \\ 0.312 \end{array}$ | $\begin{array}{c} 0.013 \\ 4.458 \\ 4.009 \\ 0.051 \end{array}$ | $     \begin{array}{r}       0.010 \\       2.850 \\       2.699 \\       0.200     \end{array} $ |
| MCIII | $E_1\\E_2\\MSE_e\\MPE_e$       | $16.528 \\ 16.528 \\ 16.528 \\ 16.528 \\ 16.528 $                 | 3.558<br>3.807<br>3.809<br>3.558                                | 2.575                                                                                             |
| MCIV  | $E_1 \\ E_2 \\ MSE_e \\ MPE_e$ | 36.519<br>33.822<br>33.810<br>33.835                              | $1.295 \\ 3.294 \\ 3.053 \\ 1.296$                              | $\begin{array}{c} 0.473 \\ 0.473 \\ 0.473 \\ 0.473 \\ 0.473 \end{array}$                          |

Comparison of error measures in the application (Case-III).

|         |        |        | _     |        |        |        |        | -      |        | *      |        |
|---------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
|         |        |        |       | MCI    |        | MCII   |        | MCIII  |        | MCIV   |        |
| Error   | [10]   | [8]    | [13]  | [1]    | MC     | [1]    | MC     | [1]    | MC     | [1]    | MC     |
| $E_1$   | 13.58  | 11.11  | 12.03 | 10.02  | 10.03  | 9.39   | 10.03  | 12.73  | 15.90  | 9.59   | 11.75  |
| $E_2$   | 141.63 | 137.85 | NA    | 133.11 | 130.16 | 133.12 | 129.71 | 146.53 | 137.83 | 170.12 | 161.07 |
| $MSE_e$ | NA     | NA     | NA    | NA     | 76.72  | NA     | 72.15  | NA     | 72.72  | NA     | 98.68  |
| $MPE_e$ | NA     | NA     | NA    | NA     | -0.99  | NA     | -0.97  | NA     | -0.02  | NA     | -0.20  |

# Conclusion



- In this study, we use different error measures to find the parameter estimates of fuzzy linear regression models with MC method.
- A simulation study is conducted to compare the estimation performances of the error measures we mentioned. We showed that only two error measures (E1 and E2) are not enough for estimating the parameters of fuzzy linear regression models.
- We also estimate the parameters with considering five different intervals from where they come.
- it is possible to say that best error measures to estimate fuzzy/crisp parameters of fuzzy regression models are not only E1 and E2 but also MSEe. Furthermore the worst error measure is MPEe for estimating the parameters of fuzzy regression models.

### **Future Works**



- Considering more than one way to get the absolute value of the triangular fuzzy number, it is possible to apply different methods in MC method in fuzzy linear regression analysis.
- Extension of the proposed method for different type of fuzzy regression models, such as nonparametric fuzzy regression or fuzzy nonlinear regression, is a potential area for the future work.
- The most important thing for fuzzy linear regression model is deciding the intervals about the parameters. New methods can be applied to choose the convenient intervals. For example expert systems or fuzzy expert systems.

[1] Abdalla A, Buckley JJ (2008) Monte Carlo methods in fuzzy linear regression II. Soft Comput, 12:463-468
 [2] Abdalla A, Buckley JJ (2008) Monte Carlo methods in fuzzy nonlinear regression. New Mathematics and Natural Computation, Vol.4,No.2,123-141

[3] Abdalla A, Buckley JJ (2007) Monte Carlo methods in fuzzy linear regression. Soft Comput, 11: 991-996

[4] AbuAarqob OA, Shawagfeh NT, AbuGhneim OA (2008) Functions Defined on Fuzzy Real Numbers According to Zadeh's Extension. International Mathematical Forum, 3, no. 16, 763 - 776

[5] Alefeldt G, Claudio D, (1998) The Basic Properties of Interval Arithmetic; its Software Realizations and Some Applications. Computers and Structures, 67, 3-8

[6] Bardossy A, Hagaman R, Duckstein L and Bogardi I (1992) Fuzzy least-squares regression: theory and applications. In J. Kacprzyk and M. Fedrizzi, editors. Fuzzy Regression Analysis, pages 181-193. Physica- Verlag, Heidelberg

[7] Buckley JJ, Jowers LJ (2008) Monte Carlo Methods in Fuzzy Optimization. Springer-Verlag, Berlin, Heidelberg

[8] Choi HS, Buckley JJ (2008) Fuzzy regression using least absolute deviation estimators. Soft Comput, 12,257-263

[9] Diamond P (1987) Least squares tting of several fuzzy variables. In Proc of Second IFSA Congress, p.20-25, IFSA, Tokyo

[10] Diamond P, Korner R (1997) Extended fuzzy linear models and least squares estimates. Comput Math Appl 33:15-32

[11] Dubois D, Prade H (1978) Operations with fuzzy numbers. Int J Syst Sci, 9(6):613-626

[12] Hong DH, Song J and Do HY ,(2001) Fuzzy least-squares linear regression analysis using shape preserving operations. Inform. Sci., 138,185-193 20

[13] Kao C, Chyu C (2002) A fuzzy linear regression model with better explanatory power. Fuzzy Sets Syst 126:401-409

[14] Kim B, Bishu RR (1998) Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets Syst, 100:343-352

[15] Luczynski W and Matloka M (1995) Fuzzy regression models and their applications. J. Fuzzy Math., 3:583-589

[16] Nather W and Korner R (1998) Linear regression with random fuzzy numbers. Uncertainty Analysis in Engineering and Sciences, p.193-211. Kluwer, Boston

[17] Peters G (1994) Fuzzy linear regression with fuzzy intervals. Fuzzy Sets Syst., 63:45-55

[18] Savic DA, Pedryzc W (1991) Evaluation of fuzzy linear regression models. Fuzzy Sets Syst. 39:51-63 [19] Taheri SM (2003) Trends in Fuzzy Statistics. Austrian Journal of Statistics, 32:3, 239-257

[20] Tanaka H (1987) Fuzzy data analysis by possibilistic linear regression models. Fuzzy Sets Syst 24:363-375

[21] Tanaka H, Ishibuchi H and Yoshikawa S (1995) Exponential possibility regression analysis. Fuzzy Sets Syst., 69:305-318

[22] Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with fuzzy model. IEEE Trans. Systems Man Cybernet. 12, 903-907

[23] Tanaka H, Uejima S, Asai K (1980) Fuzzy linear regression model. In:International Congress on Applied Systems and Cybernetics, Vol.VI. Acapulco, Mexico, VI,pp.2933-2938

[24] Yen K.K., Ghoshray S. and Roig G (1999) A linear regression model using triangular fuzzy number coecients. Fuzzy Sets Syst., 106:167-177

[25] Zadeh LA (1965) Fuzzy Sets. Inform Control, 8,338-353



### **On using different error measures for fuzzy**

# linear regression analysis

Duygu İÇEN

Hacettepe University Department of Statistics Ankara /TURKEY

2013