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Introduction to the problem of coarse data

Introduction to the problem of coarsened data

Two kinds of uncertainty

First kind of uncertainty: Sampling variability

Second kind of uncertainty: Lack of information

⇓ ⇓
Epistemic uncertainy Ontologic uncertainty
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Introduction to the problem of coarse data

Epistemic uncertainty

Imprecise observation of something precise

True underlying coarsening mechanism available

Different types of coarsening

Rounding

Grouping

Heaping

Censoring

...
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Introduction to the problem of coarse data

Epistemic uncertainty

Imprecise observation of something precise

True underlying coarsening mechanism available

Different types of coarsening

Rounding

Grouping classes of wages per month for working students:

Heaping [0, 200), [200, 400), [400, 600), ...

Censoring

...
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Introduction to the problem of coarse data

Epistemic uncertainty

Imprecise observation of something precise

True underlying coarsening mechanism available

Different types of coarsening

Rounding e.g. Age heaping

Grouping G=0: true age truncated to the next lowest month,

Heaping G=1 to the next lowest half year,

Censoring G=2 to the next lowest year

...
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Introduction to the problem of coarse data

Epistemic uncertainty

Imprecise observation of something precise

True underlying coarsening mechanism available

Different types of coarsening

Rounding

Grouping

Heaping

Censoring e.g. failure time data

...
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Introduction to the problem of coarse data

Ontologic uncertainty

Precise observation of something imprecise

Coarse observations are true observations

⇒ No coarsening mechanism available

Imprecision because of Indecision

e.g. some respondents are indecisive between electing party A and

party B

⇒ category ”A or B” (AB) represents the truth
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Introduction to the problem of coarse data

Questions to be answered

Are there some general approaches for dealing with...

... epistemic uncertainty?

... ontologic uncertainty?

How can those types of uncertainty be involved within a regression

model?

How can those approaches be compared?

Here:

Categorical data only

Coarse dependent variable only
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Approaches for dealing with epistemic uncertainty

Approaches for dealing with epistemic uncertainty

Initial problem:

P(Y = y) =
∑
Y

P(Y = y)|Y = y)︸ ︷︷ ︸
q

·P(Y = y)

Possible solutions:

Assuming ignorability: Coarsening at random

Set valued results by procedures that avoid making unjustified

assumptions

Partial identification

Sensitivity analysis
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Approaches for dealing with epistemic uncertainty

Coarsening at random (CAR)

Likelihood according to Heitjan and Rubin (1991)

L(θ, γ, y) =

∫
y

q(y|y , γ) f (y , θ)dy

Types of coarsening:

nonstochastic:

q(y|y , γ) = r(y|y , θ) =

{
1, if y = Y(y)
0, if y 6= Y(y)

stochastic:

q(y|y , γ) =

∫
Γ

r(y|y , g) h(g |y , γ)dg .
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Approaches for dealing with epistemic uncertainty

Coarsening at random (CAR)

”Under which circumstances can stochastic nature of the
coarsening be ignored?”

⇒ CAR + distinct parameters

”The data are CAR if,
for the fixed observed value of y and for each value of γ,

q(y|y , γ) takes the same value for all y ∈ y,
i.e., for all values of y that are consistent with y.”

– Heitjan and Rubin, 1991, p.2248 –
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Approaches for dealing with epistemic uncertainty

Relation to the missing data problem

Missing as a special case of coarsening

Coarsened data

CCAR

Missing data

CAR

MCAR

MAR

NMAR
NCAR

{ω}

Ƥ(Ω)Ω

Ω
Ω
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Approaches for dealing with epistemic uncertainty

Partial identification

Identification region in context of missing data according to Manksi (2003):

H[P(Y = y)] ≡ [P(Y = y |g = 1) · P(g = 1) + P(Y = y |g = 0)︸ ︷︷ ︸
γ

·P(g = 0), γ ∈ ΓY ].

Identification region in context of coarsened data:

H[P(Y = A)] ≡ [P(Y = A|Y = A)︸ ︷︷ ︸
1

P(Y = A) +

P(Y = A|Y = AB)︸ ︷︷ ︸
γ1

·P(Y = AB) +

P(Y = A|Y = AC )︸ ︷︷ ︸
γ2

P(Y = AC ),

∀ possible P(Y = A|Y = y) = γi , i = 1, 2]
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Approaches for dealing with epistemic uncertainty

Partial identification: Different points of view

Conditioning on the observed
variable P(Y=y|Y=yY=yY=yY=y) ….

observed Y Y Y Y true Y

A A

AB

AC

…

A
B

P(Y=A)= P(Y Y Y Y =A) P(Y=A|YYYY = A) +

P(YYYY =AB) P(Y=A|YYYY = AB) +

P(YYYY =AC) P(Y=A|YYYY = AC) 

1
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Approaches for dealing with epistemic uncertainty

Partial identification: Different points of view

Conditioning on the observed
variable P(Y=y|Y=yY=yY=yY=y) ….

Conditioning on the true variable 
P(Y=yY=yY=yY=y |Y=y) ….

observed Y Y Y Y true Y

A

B

C

A A

AB

AC…

…

A

AB

AC

…

A
B

P(Y=A)= P(Y Y Y Y =A) P(Y=A|YYYY = A) +

P(YYYY =AB) P(Y=A|YYYY = AB) +

P(YYYY =AC) P(Y=A|YYYY = AC) 

1

P(Y =AB)= P(Y=A) P(YYYY = AB|Y=A) +

P(Y=B) P(YYYY = AB|Y=B) +

P(Y =C) P(YYYY = AC|Y=C) 

q1

q2

0

true Y observed Y Y Y Y 
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Approaches for dealing with epistemic uncertainty

Partial identification: Different points of view

Approach 1 Approach 2

Starting P(Y=y)= P(Y = y) =

point =
∑

Y P(Y = y|Y = y)P(Y = y) =
∑
Y P(Y = y|Y = y)P(Y = y)

Assumptions P(Y = y |Y = y) = γ P(Y = y|Y = y) = q

on... (conditioning on observed variable (conditioning on true variable)

Empirical - γ ∈ [0, 1] q1 ≤
P(Y=AB)

P(Y=A)+P(Y=AB)

evidence q2 ≤
P(Y=AB)

P(Y=B)+P(Y=AB)

- No lower bound q
1

and q
2

- Make plausible - CAR

set-valued assumptions

Further about γ

assumptions - Evaluate by - Assumption about

contentual aspects R = q2
q1

if γ1 > γ2

or vice versa
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Approaches for dealing with epistemic uncertainty

Sensitivity analysis

Foundations:

Ignorance region ir(θ,∆): whole collection of θ-values that result

from different δ

Sensitivity parameter δ: Parameter of interest is identified given the

value of δ

Selection model in context of missing data

πg1g2,ij = pij · qg1g2|ij .

Application in the framework of coarse data

Selection model: πAB,A = pA · qAB|A

Additional restriction: qA|A + qAB|A + qAC |A = 1

⇒ qAC |A ≤ 1− qA|A − qAB|A
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Approaches for dealing with epistemic uncertainty

Comparison of partial identification and sensitivity analysis

Total 
Uncertainty

(2nd kind)

Total 
Certainty
(2nd kind)

Parameter without
any information

Partially identified
parameter

Point identified
parameter

PARTIAL IDENTIFICATION

SENSITIVITY ANALYSIS

Including uncertainty by

Increasing assumptions by
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Dealing with ontologic uncertainty

Dealing with ontologic uncertainty

Introduction of the distribution on the power set in order to deal with

ontologic uncertainty (?-notation)

Foundations adapted from

Random set theory: Finite random sets (basic idea)

Dempster-Shafer theory (interpretation of notions, prediction)
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Dealing with ontologic uncertainty

Finite random sets

Important notions:

Definition of finite random sets:

A finite random set with values in P(Ω) is a map X : Ω→ P(Ω) such that

X−1({A}) = {ω ∈ Ω : X (ω) = A} ∈ A, for any A ⊆ Ω.

Definition of distribution on the power set and capacity functional (DST:

belief, plausibility)

General analysis of coarse data under ontologic uncertainty

Coarse observations can be regarded as own outcomes ⇒ analysis on the power

set P(Ω) \ ∅ = Ω?

P? : P(Ω?) = P(P(Ω) \ ∅) → R

A? → R,
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Dealing with ontologic uncertainty

Dempster-Shafer theory - Introduction

Example: Who has filled the role of Santa Claus this year? A, B or C?
Query set Q = [B,C ]

person no. 1 2 3 4 5 6

guess of person [A,B] [A,C ] A C [A, B, C] [B, C]

Measure of belief: include all guesses gi that are fully contained

within the query set (i.e. gi ⊆ Q)

⇒ Bel(Q) = 2
6 = 1

3

Measure of plausibility: involve all guesses gi that intersect the query

set Q (i.e. gi ∩ Q 6= ∅)
⇒ Pl(Q) = 5

6
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Dealing with ontologic uncertainty

Dempster-Shafer theory - Important notions

Basic probability assignement m : P(Ω)→ [0, 1]

m(∅) = 0 and
∑

A⊆Ω m(A) = 1

confidence that can be exactly commited to A

Belief function Bel : P(Ω)→ [0, 1]

Bel(Ω) = 1, Bel(∅) = 0

∞-monotone, i.e. Bel(∪ki=1Aj) ≥
∑
∅6=I⊆{1,2,...,k}(−1)|I |+1Bel(∩i∈IAi )

calculation: Bel(Q) =
∑

A⊆Q m(A)

Plausibility function Pl : P(Ω)→ [0, 1]

Pl(Ω) = 1, Pl(∅) = 0

alternating of infinite order, i.e.

Pl(∩kj=1) ≤
∑
∅6=I⊆{1,2,...,n}(−1)|I |+1Pl(∪i∈IKi )

calculation: Pl(Q) =
∑

A∩Q 6=∅m(A)
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Dealing with ontologic uncertainty

Belief and plausibility function as instruments for prediction

Analysis based on distributions on the power set as generalization of classical

probability theory

Interpretation of Pl and Bel as lower and upper bound respectively

Prediction under the presence of ontologic uncertainty:

Π?: family of distributions on the power set, F ? : Ω? → [0, 1]

F ?(Q)? =
∑

A?⊆Q?

m?(A?) = inf{F ?(A?)|F ? ∈ Π?}

F ?(Q?) =
∑

A?∩Q? 6=∅

m?(A?) = sup{F ?(A)|F ? ∈ Π?}

⇒ F ?(Q?) = [F ?(Q?),F ?(Q?)]

where the length of the interval indicates the extent of ontologic uncertainty
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Extension of multinomial logit model

Modelling approach with coarse data

Goal: Involve 1.) epistemic and 2.) ontologic uncertainty within the

dependent variable

Precise multinomial logit model as a starting point:

Yi ∈ {1,...,c} is categorical and of nominal scale

The probability of occurrence for category r is determined by

P(Yi = r |xi ) = πir =
exp(xTi βr )

1 +
∑c−1

s=1 exp(xTi βs)

... and for the reference category by

P(Yi = c |xi ) = πic = 1− πi1 − ...− πic−1 =
1

1 +
∑c−1

s=1 exp(xTi βs)

Solving for the linear predictor:

log
πir
πic

= xTi βr , r = 1, ..., c
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Extension of multinomial logit model Accounting for epistemic uncertainty

Epistemic uncertainty - Data generating process

True categories: ”A”, ”B”, Observed categories: ”A”, ”B”, ”A or B”

Data for iid-model

iid assumption ⇒ πiA = πA and πiB = πB

Different combinations of q1 = P(Ycoarse = A or B|Y = A) and

q2 = P(Ycoarse = A or B|Y = B) ⇒ Ycoarse1, ...,Ycoarse81

100 datasets of that kind:

Y Ycoarse1 Ycoarse2 · · · Ycoarse81

B A or B B · · · B

A A A · · · A or B

B B B · · · A or B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A A A · · · A or B

J.Plaß (Institute for statistics) Coarse categorical data 17th of June 2013 22 / 33



Extension of multinomial logit model Accounting for epistemic uncertainty

Epistemic uncertainty - Data generating process

True categories: ”A”, ”B”, Observed categories: ”A”, ”B”, ”A or B”

Data for model with covariates

sampling probabilities πiA and πiB are dependent on underlying values of

covariates Xi1 ∼ Po(3) and Xi2 ∼ N (0, 4)

same way of coarsening as in iid-model

100 datasets of that kind:

Y X1 X2 Ycoarse1 Ycoarse2 ... Ycoarse81

A 7 0.2456983 A A or B · · · A

A 1 1.7636975 A A · · · A

A 5 0.8042766 A A · · · A or B

B 2 0.5196141 B B · · · B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

B 3 -5.134471 B A or B · · · A or B

A 1 -0.7402479 A A · · · A

A 2 2.448102 A A · · · A or B
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Extension of multinomial logit model Accounting for epistemic uncertainty

Epistemic uncertainty - Models of interest

Model 1: iid model

L(q, πiA) =
∏
Yi

P(Y = y)

=
∏

i :Yi =A

P(Y = A|Y = A)︸ ︷︷ ︸
(1−q1)

πA

∏
i :Yi =B

P(Y = B|Y = B︸ ︷︷ ︸
(1−q2)

(1− πA)

∏
i :Yi =AB

P(Y = A or B|Y = A)︸ ︷︷ ︸
q1

πA + P(Y = A or B|Y = B)︸ ︷︷ ︸
q2

(1− πA).

⇒ estimators: π̂A, q̂1, q̂2

Model 2: Including covariates

L(q1, q2, βA) =

N1∏
i=1

(1− q1)
exp(βA0 + xi1βA1 + xi2βA2)

1 + exp(βA0 + xi1βA1 + xi2βA2)

N2∏
i=N1+1

(1− q2)
1

1 + exp(βA0 + xi1βA1 + xi2βA2)

N∏
i=N2+1

q1
exp(βA0 + xi1βA1 + xi2βA2)

1 + exp(βA0 + xi1βA1 + xi2βA2)
+

q2

1 + exp(βA0 + xi1βA1 + xi2βA2)

⇒ estimators: β̂0, β̂1, β̂2, q̂1, q̂2

In both models: Problem of identification
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Extension of multinomial logit model Accounting for epistemic uncertainty

Epistemic uncertainty - Models of interest

Coarsening mechanism
(q1 and q2)

known

q1=q2=0 
precise case

(case 1a/2a)

q1≠0 and 
q2≠0

(case 1b/2b)

unknown

CAR↔
q1=q2

(case 1c/2c)

Partial identification/ 
Sensitivity analysis

(case 1d/2d)

Case d.I: R=q2/q1 known

Case d.II: R<1 known only

Case d.II: including upper
boundNo problem of identification

→ point identified solutions
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Extension of multinomial logit model Accounting for epistemic uncertainty

Model 1 under epistemic uncertainty - Cases 1a to d.I

●●●●●●

●

●

−0.01

0.00

0.01

a b c d.I
cases

re
la

tiv
e 

bi
as Different cases:

a: precise case
b: known q1 and q2
c: CAR
d.I: known R

Relative bias of π̂A in cases 1a to 1d.I

︸︷︷︸
Generalization of CAR
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Extension of multinomial logit model Accounting for epistemic uncertainty

Model 1c: Consequences if CAR is not valid

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
q1

q 2

−0.50
−0.25
0.00
0.25

bias

Relative bias of π̂A if CAR is assumed

Median rel. bias of π̂A for

combinations of q1 and q2

Max. rel. bias of 0.72

if q1 = 0.9 and q2 = 0.1

No symmetric problem
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Extension of multinomial logit model Accounting for epistemic uncertainty

Model 1d.II: Assumption of R < 1 only

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−0.05

0.00

0.05

0.10

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R

re
la

tiv
e 

bi
as

Assumed R:
wrongly assumed R
true R

Relative bias of π̂A for different values of R < 1

Median relative bias

between −0.05 and 0.18

π̂A ∈ [0.64, 0.78] if

assumption is involved

(true πA = 0.67)

π̂A ∈ [ nAn ,
nA+nAB

n ] =

[0.40, 0.77] if no

assumption implied
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Extension of multinomial logit model Accounting for epistemic uncertainty

Model 1d.III: Involving upper bounds q̄1 and q̄2

How can the set of possible π̂A be

restricted by using the empirical

evidence only?

First implying upper

bounds only

Involve relation between q1

and q2 additionally:

P(Y = AB) =

πAq1 + (1− π)q2

q1 =
nAB − nq2(1− πA)

nπA

q2 =
nAB − nq1πA

n(1− πA)

q2

q1

0               0.2 0.4                  0.6                     0.8 1

0.2

0.4

0.6

0.8

1

Implying a selection of       only

All

q1upper

q2upper

(Step 1)

Accounting
for bounds
(Step 2)

Relation 
between
q1 and q2
(Step 3)
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Extension of multinomial logit model Accounting for epistemic uncertainty

Model 1d.III: Involving upper bounds q̄1 and q̄2

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
q2

q 1

prefer
●

●

all values
selection

Preferred approach differentiated by
true combinations of q1 and q2 Median relative bias for the first

dataset are depicted

Method seems to be reasonable in

cases that strongly differ from CAR

only:

q1 = q2 = q

⇔ nAB − qn(1− πA)

nπA

=
nAB − qnπA

n(1− πA)

⇒ only valid if πA=0.5
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Extension of multinomial logit model Accounting for ontologic uncertainty

Multinomial logit model under ontologic uncertainty

Idea and particularity of the model

Coarse values represent the truth

⇒ Multinomial logit model with coarse observations (e.g. ”A or B”)

as own categories

No further changes compared to precise multinomial logit model

⇒ Predictions by means of Dempster-Shafer theory
⇒ How far does it make sense to imply additional assumptions?
⇒ Comparison of results under epistemic and ontologic uncertainty

Evaluation of estimators if wrong type of uncertainty is assumed
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Conclusion

Conclusion

Important to distinguish between epistemic and ontologic uncertainty

For dealing with epistemic uncertainty some methods of the

framework of missing data can be applied

For dealing with ontologic uncertainty ?-notation could be introduced

General dealing of coarse data and prediction

Formal background can be provided by random set theory and DST

Multinomial logit model can be extended by accounting for...

... epistemic uncertainty: Extending likelihood ⇒ Identification problem

⇒ Identifying restrictions as CAR or partial identification

... ontologic uncertainty: Extending model by implying coarse

categories as own categories
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Conclusion
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