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Introduction

Time-to-event analysis

Subjects can fail from one out of K mutually exclusive types of event

Often relevant in clinical studies:
Primary endpoint: Time to cancer-speci�c death / cardiac death / ...

Special methods have to be conducted
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Basic quantities

Basic quantities:

I Cumulative incidence function (CIF):

Fk(t) = P(T ≤ t,D = k) =

∫ t

0

λk(s)S(s−)ds

I Cause-speci�c hazard (CSH):

λk(t) = lim
∆t→0

P(t ≤ T < t + ∆t,K = k|T ≥ t)

∆t

I Overall survivor function S(t):

S(t) = exp
(
−

K∑
l=1

Λl (t)
)

Di�erent methods available for the analysis of competing risks data

The �naïve� Kaplan-Meier estimator gives a biased estimate for the
probability of an event of type k up to time t
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Cause-speci�c hazards regression

Regression based on the cause-speci�c hazards (Prentice et al. 1978):

Focus on cause-speci�c hazard rates using e.g. a Cox-type regression model:

λk(t|X) = λk,0(t)exp(β>k X)

Can be performed using standard Cox-regression software treating competing
events as censored observations

Estimated CIFs depend on CSHs for all event types

Fk(t|X) =

∫ t

0

λk(s|X) exp
(
−

K∑
l=1

Λl(t|X)ds
)

CSHs completely determine the competing risks process

Higher CSH for an event k does not necessarily translate into a higher event
probability for k
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The subdistribution hazard

Introduced by Gray (1988)

Aim of the subdistribution hazard:
A �hazard function� that is directly linked to the CIF in the presence of
competing risks

De�nition of the subdistribution hazard (SDH) for event k:

γk(t) = lim
∆t→0

P(t ≤ T < t + ∆t,D = k|T ≥ t ∪ {T < t,D 6= k})
∆t

.

Subjects failing from an event D 6= k remain in the risk set (until their
potential censoring time).

For the SDH (as known from standard survival analysis):

Fk(t|X) = 1− exp
(
− Γk(t|X)

)
Competing events are considered implicitly in the adapted risk set
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Subdistribution hazard regession

Introduced by Fine & Gray (1999)

Focusing on the SDH for the event of interest

Individuals failing from an event D 6= k remain in the risk set until their
potential censoring time

Censoring time distribution is estimated from the censored observations

Competing events are weighted using the inverse probability of censoring
weighting (IPCW) approach

A Cox-type regression model was proposed for the SDH:

γk(t|X) = γk;0(t) exp(β∗>k X)

Proportionality assumption often questionable in practice.

9 / 31



The mixture model approach

Alternative regression approach - introduced by Larson and Dinse (1985)

P(T ,D) = P(D) P(T |D)

Proposed: Logistic regression for type of event, parametric model for
conditional event time distributions

I Larson & Dinse (1985): piecewise-exponential
I Lau et al. (2011): generalized gamma distribution

Likelihood contribution of subject i :

Li = [πi f1(ti )]I (di =1) × [(1− πi )f2(ti )]I (di =2)

×[πiS1(ti ) + (1− πi )S2(ti )]I (di =0)

with fk(t) and Sk(t) denoting quantities of the cond. event time distributions

Numerical maximization to determine ML-estimates
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Simulation following prede�ned cause-speci�c hazards

Beyersmann et al. (2009), example for two possible event types:

De�ne CSHs depending on covariates: λ1(t|X), λ2(t|X)

Determine the overall hazard rate: λ(t|X) = λ1(t|X) + λ2(t|X).

Generate an event time ti for subject i with hazard rate λ(t|xi).
Determine the event type di by running a Bernoulli experiment

I P(Di = 1) = λ1(t|xi) /
(
λ1(t|xi) + λ2(t|xi)

)
I P(Di = 2) = λ2(t|xi) /

(
λ1(t|xi) + λ2(t|xi)

)
Draw possible censoring times from a censoring time distribution and
determine event time and status accordingly.

Used in several research articles for investigation of competing risks methods.

12 / 31



Simulation following prede�ned subdistribution hazards

Di�erent approaches focusing on the SDHs were introduced

Simulation mainly conducted using unit exponential mixture distributions

Simulation using �exible prespeci�ed subdistribution hazards not possible

Idea by Beyersmann et al. (2009):

Use relationship between CSH and SDH:

λ1(t|X) = γ1(t|X)
(
1 +

F2(t|X)

S(t|X)

)
(1)

Specify SDH for event of interest and one CSH

Calculate other CSH following (1)

Simulate event times using the CSHs to obtain data following the
prespeci�ed SDHs
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Simulation following prede�ned subdistribution hazards

Problems:

Certain constraints on di�erent quantities

I All hazard functions have to be non-negative for all time points t > 0.

I lim
t→∞

Fk(t|X) < 1 ⇔ lim
t→∞

γk(t|X) = 0

I lim
t→0

λk(t|X) = lim
t→0

γk(t|X)

Simulation following time-varying CSHs needed
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Simulation following prede�ned subdistribution hazards

Example:

γ1(t) = 0.001 exp
(
− 0.001 t

ln(2)

)
λ1(t) = 0.001

λ2(t|X) = γ1(t|X)− λ1(t|X)− d

dt
ln

(
γ1(t|X)

λ1(t|X)

)
= 0.001 exp

(
− 0.001 t

ln(2)

)
− 0.001 + 0.001

ln(2)
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Two methods for data generation (I)

Aim: Generate event times with hazard rate λ(t|X) = λ1(t|X) + λ2(t|X)

Inversion method (see e.g. Bender et. al (2005))

U = exp
(
− Λ(t|X)

)
⇔ T = Λ−1(−ln U)

I U ∼ U[0, 1]
I Λ−1(z) is the inverse function of the cumulative overall hazard function

In general, numerical procedures for
I the cumulative overall hazard function
I the solution of U = exp

(
− Λ(t|X)

)
Can become very time-consuming
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Two methods for data generation (II)

Based on binomial algorithm (by Sylvestre & Abrahamowicz (2008))

Event time generation for discrete timepoints

Start with subject i = 1

Begin at time tj = 1

Prob. for any event at time tj for subject i : p(tj |xi) = λ1(tj |xi) + λ2(tj |xi)
Perform Bernoulli experiment to determine whether i failed at tj

Event at tj
I Determine type of event
I Continue for subject i+1

No event at tj :
I Continue for timepoint tj + 1
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The Binomial approach

Investigated for di�erent scenarios
I One group
I Two groups, constant SD hazard ratio
I Two groups, time-varying SD hazard ratio
I One quantitative covariate
I Multiple covariates (SDH regression model)

Established methods were used to analyse the generated data

Good behaviour of the data generating process

Can lead to bindings in event times

Amount of binding can be controlled by choice of hazard functions

Published in:
Haller B, Ulm K (2013) Flexible simulation of competing risks data following

prespeci�ed subdistribution hazards. Journal of Statistical Computation and

Simulation. doi:10.1080/00949655.2013.793345.
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The mixture model - notation (following Lau et. al, 2011)

P(T ,D|X) = P(D|X) P(T |D,X)

Probability for an event of type k: πk(X) = P(D = k|X)

Density function of the conditional event-time distribution: fk(t|D = k,X))

Cum. density fct. of the cond. event-time distribution: Fk(t|D = k,X))

Survivor function of the conditional event-time distribution: Sk(t|D = k,X)

Subdensity function: f ∗k (t|X) = fk(t|D = k,X)πk(X)

Subdistribution function: F ∗k (t|X) = Fk(t|D = k,X)πk(X)
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The mixture model - relationships

Following Lau et al. (2011)

Cause-speci�c hazard function: λk(t|X)

Subdistribution hazard function: γk(t|X)

Overall survival function: S(t|X)

S(t|X) = exp
(
−

K∑
l=1

Λl(t|X)
)

=
K∑
l=1

πk(X) Sk(t|D = k,X))

Cumulative incidence function: F ∗k (t|X)

F ∗k (t|X) =

∫ t

0

λk(s|X) exp
(
−

K∑
l=1

Λl(t|X)ds
)

F ∗k (t|X) = 1− exp
(
− Γk(t|X)

)
F ∗k (t|X) = Fk(t|D = k,X)πk(X)
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Estimating CSH and SDH from a mixture model

CSH: λk(t|X) = f ∗k (t|X)/S(t|X)

SDH: γk(t|X) = f ∗k (t|X)/
(
1− F ∗k (t|X)

)

Proposal by Lau et al:

Use a generalized gamma distribution for conditional event times

Allows �exible estimation of CSHs and SDHs

f (t) =
|λ|

σtΓ(λ−2)

(
λ−2(e−βt)λ/σ

)λ−2

exp
(
− λ−2(e−βt

)λ/σ)
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The generalized gamma distribution
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Problems / issues:

Numerical instabilities

Weighting of extreme observations

Are all relevant forms covered?
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Alternative approach: penalized B-splines

De�ne set of basis functions Bk(t), e.g. cubic splines

The hazard function can be modelled using Bk(t), e.g. (Rosenberg, 1995):

h(t|θ) =
K∑

k=−3
Bk(t) exp(θ)

Roughness of the estimated hazard function will be penalized using
I a smoothing parameter λ
I a matrix D, e.g. second order di�erences

D2 =


1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1 −2 1 0
0 . . . . . . 0 1 −2 1


Maximize penalized Log-Likelihood:

lpen = l(θ; t, d ,B)− 1

2
λθ>Dk

>
Dk θ

Find ML estimates by numerical optimization
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Possible approach

Illustration of P-spline approach for one possible endpoint
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P-spline approach

Simulated example:
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P-spline approach

Simulated example:
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Adapting the P-Spline approach for the mixture model

Di�erent approaches available (hazard function, cumulative hazard function)

Penalty matrix has to be adapted

Implementation (R)

Numerical maximization to �nd ML-estimates

I Stable results?
I Computation time?

Con�dence interval estimation for HRs (bootstrap)
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Outlook

Comparison of generalized gamma and P-spline approach
I Real data examples::

Data used by Lau et al. (2011) are available in R
I Simulated data

F Data generated according to mixture model approach
F Prede�ned CSHs
F Prede�ned SDHs

Investigate roles of
I Smoothing parameter
I Number and placing of knots
I Penalisation
I Amount of censoring
I . . .

Estimating �average hazard ratios� in adequate situations
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