A note on sharp identification regions

Let $P := \{ \mathbb{P}_{\theta} \mid \theta \in \Theta \}$ be a statistical model and

- Y,... unobservable random variables,
- $X, \underline{Y}, \overline{Y}, \ldots$ observable random variables w.r.t an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- The joint distribution of the random Variables $X, Y, \underline{Y}, \overline{Y}$ under a model P_{θ} is denoted with F_{θ} and the joint distribution under the "true model" \mathbb{P} is denoted with $F^{X,Y,\underline{Y},\overline{Y}}$.
- The unobserved variables fullfill a certain condition $C(X, Y, \underline{Y}, \overline{Y}) = 1$.

e.g.
$$\underline{Y} \leq Y \leq \overline{Y}$$
 or $\forall X : \mathbb{E}(\underline{Y} \mid X) \leq \mathbb{E}(Y \mid X) \leq \mathbb{E}(\overline{Y} \mid X)$.

• Two parameters θ_1 and θ_2 are undistinguishable (i.e. $\theta_1 \sim \theta_2$) if the corresponding models \mathbb{P}_{θ_1} and \mathbb{P}_{θ_2} are empirically undistinguishable, which means, that the distributions of the observable variables are the same:

$$F_{\theta_{\mathbf{1}}}^{X,\underline{Y},\overline{Y}}=F_{\theta_{\mathbf{2}}}^{X,\underline{Y},\overline{Y}}.$$

A statistical model P is called point-identified, if any two different parameters θ_1 and θ_2 are empirically distinguishable, i.e.:

$$\sim \ = \ \Delta_{\Theta} = \{(\theta, \theta) \mid \theta \in \Theta\}.$$

Otherwise it is called partially identified.

Example

The simple linear model

$$\Theta = B imes \mathbb{R}_{\geq 0} imes \mathcal{Z}(\mathbb{R}_{\geq 0}) imes \mathcal{Z}(\mathbb{R}_{\geq 0})$$

with $B = \mathbb{R}^2$. For $\theta = (\beta, \sigma^2, \sigma_I, \sigma_u) \in \Theta$, the random variables are defined as:

$$\begin{array}{rcl} Y & = & X\beta + \varepsilon \\ \underline{Y} & = & X\beta + \varepsilon - \sigma_I \\ \overline{Y} & = & X\beta + \varepsilon + \sigma_u \end{array}$$

with $\varepsilon \sim N(0, \sigma^2 I)$.

Example

The simple linear model

$$\Theta = B \times \mathbb{R}_{\geq 0} \times \mathcal{Z}(\mathbb{R}_{\geq 0}) \times \mathcal{Z}(\mathbb{R}_{\geq 0})$$

with $B = \mathbb{R}^2$. For $\theta = (\beta, \sigma^2, \sigma_I, \sigma_u) \in \Theta$, the random variables are defined as:

$$Y = X\beta + \varepsilon$$

$$\underline{Y} = X\beta + \varepsilon - \sigma_I$$

$$\overline{Y} = X\beta + \varepsilon + \sigma_u$$

with $\varepsilon \sim N(0, \sigma^2 I)$.

Here we are only interested in the values of $\beta \in B$.

This model is only partially identified. For example

$$((\beta_0, \beta_1), \sigma^2, 0, 1)$$
 $\sim ((\beta_0 + 1, \beta_1), \sigma^2, 1, 0).$

This model is only partially identified. For example

$$((\beta_0, \beta_1), \sigma^2, 0, 1)$$
 $\sim ((\beta_0 + 1, \beta_1), \sigma^2, 1, 0).$

Moreover, the quotient space $\Theta_{/\sim}$ ist not of the form

$$\Theta_{/\sim} = B_{/\approx} \times \text{,,rest''},$$

so we must factorize the whole space Θ and not only the interesting B to make the model point-identified.

Estimation \longleftarrow Model \longrightarrow Pediction

 \leftarrow | Model | \rightarrow | Pediction Estimation "model as a truth to be estimated " "model as a tool to be applied"

Estimation $-- \mid \mathit{Model} \mid \longrightarrow \mid \mathit{Pediction} \mid$..model as a truth to be estimated " "model as a tool to be applied" e.g.: least squares estimator linear model best linear predictor

Given distribution F^{Y} of Y of the class $\{F_{\theta}^{Y} \mid \theta \in \Theta\}$,

Given distribution F^Y of Y of the class $\{F_{\theta}^Y \mid \theta \in \Theta\}$, find (all) θ , such that

$$Y \sim F_{\theta}$$

Given distribution F^Y of Y of the class $\{F^Y_{\theta} \mid \theta \in \Theta\}$, find (all) θ , such that

$$\begin{array}{ccc} & Y \sim F_{\theta} \\ \Longleftrightarrow & F^{Y} = F_{\theta}^{Y} \end{array}$$

Given distribution F^Y of Y of the class $\{F_{\theta}^Y \mid \theta \in \Theta\}$, find (all) θ , such that

$$Y \sim F_{\theta}$$

$$\iff F^{Y} = F_{\theta}^{Y}$$

$$\iff L(F_{\theta}^{Y}, F) = 0$$

for some distance-function $L(\cdot, \cdot)$.

Given F^{Y} of the class $\{F_{\theta}^{Y} \mid \theta \in \Theta\}$,

Given
$$F^Y$$
 of the class $\{F^Y_\theta \mid \theta \in \Theta\}$, find (all) θ , such that

$$L(F_{\theta}, F^{Y})$$

is minimal.

Given
$$F^Y$$
 of the class $\{F_{\theta}^Y \mid \theta \in \Theta\}$, find (all) θ , such that

$$L(F_{\theta}, F^{Y})$$

is minimal.

• also makes sense, if $F^Y \notin \{F^Y_\theta \mid \theta \in \Theta\}$.

Given F^Y of the class $\{F^Y_\theta \mid \theta \in \Theta\}$, find (all) θ , such that

$$L(F_{\theta}, F^{Y})$$

is minimal.

- also makes sense, if $F^Y \notin \{F^Y_\theta \mid \theta \in \Theta\}$.
- if the model is correctly specified, then "prediction" and "estimation" are "nearly the same".

Given
$$F^Y$$
 of the class $\{F^Y_\theta \mid \theta \in \Theta\}$, find (all) θ , such that

$$L(F_{\theta}, F^{Y})$$

is minimal.

- also makes sense, if $F^Y \notin \{F^Y_\theta \mid \theta \in \Theta\}$.
- if the model is correctly specified, then "prediction" and "estimation" are "nearly the same".

The actual problem is, that F^Y is unknown \Longrightarrow later.

Let $P = \{ \mathbb{P}_{\theta} \mid \theta \in \Theta \}$ be a statistical model with the corresponding joint distributions $\{ F_{\theta}^{X,Y,\underline{Y},\overline{Y}} \mid \theta \in \Theta \}$ and $X,\underline{Y},\overline{Y}$ random variables with the joint distribution $F^{X,\underline{Y},\overline{Y}}$. The **Sharp Estimation Region (SER)** is defined as:

Let $P = \{\mathbb{P}_{\theta} \mid \theta \in \Theta\}$ be a statistical model with the corresponding joint distributions $\{F_{\theta}^{X,Y,\underline{Y},\overline{Y}} \mid \theta \in \Theta\}$ and $X,\underline{Y},\overline{Y}$ random variables with the joint distribution $F^{X,\underline{Y},\overline{Y}}$. The **Sharp Estimation Region (SER)** is defined as:

$$SER(\underline{Y}, \overline{Y}) := \{ \theta \in \Theta \mid C(X, Y, \underline{Y}, \overline{Y}) = 1 \}.$$

Let $P = \{ \mathbb{P}_{\theta} \mid \theta \in \Theta \}$ be a statistical model with the corresponding joint distributions $\{ F_{\theta}^{X,Y,\underline{Y},\overline{Y}} \mid \theta \in \Theta \}$ and $X,\underline{Y},\overline{Y}$ random variables with the joint distribution $F^{X,\underline{Y},\overline{Y}}$. The **Sharp Estimation Region (SER)** is defined as:

$$\mathit{SER}(\underline{\mathsf{Y}},\overline{\mathsf{Y}}) := \{\theta \in \Theta \mid \mathit{C}(X,Y,\underline{\mathsf{Y}},\overline{\mathsf{Y}}) = 1\}.$$

If the model is correctly specified, this region can also be written as:

$$SER(\underline{Y}, \overline{Y}) = \underset{\theta \in \Theta}{\mathsf{argmin}} \left(\inf_{Y \leq t. C(X, Y, \underline{Y}, \overline{Y}) = 1} L\left(F_{\theta}, F^{X, Y, \overline{Y}, \underline{Y}}\right) \right).$$

Let $P = \{\mathbb{P}_{\theta} \mid \theta \in \Theta\}$ be a statistical model with the corresponding joint distributions $\{F_{\theta}^{X,Y,\underline{Y},\overline{Y}} \mid \theta \in \Theta\}$ and $X,\underline{Y},\overline{Y}$ random variables with the joint distribution $F^{X,\underline{Y},\overline{Y}}$. The **Sharp Estimation Region (SER)** is defined as:

$$\mathit{SER}(\underline{\mathsf{Y}},\overline{\mathsf{Y}}) := \{\theta \in \Theta \mid \mathit{C}(X,Y,\underline{\mathsf{Y}},\overline{\mathsf{Y}}) = 1\}.$$

If the model is correctly specified, this region can also be written as:

$$\mathit{SER}(\underline{Y}, \overline{Y}) = \underset{\theta \in \Theta}{\mathsf{argmin}} \left(\inf_{\mathbf{Y} \leq .t. \, C(X,Y,\underline{Y},\overline{Y}) = 1} L\left(F_{\theta}, F^{X,Y,\overline{Y},\underline{Y}}\right) \right).$$

The **Sharp Prediction Region (SPR)** is defined as:

Let $P = \{ \mathbb{P}_{\theta} \mid \theta \in \Theta \}$ be a statistical model with the corresponding joint distributions $\{ F_{\theta}^{X,Y,\underline{Y},\overline{Y}} \mid \theta \in \Theta \}$ and $X,\underline{Y},\overline{Y}$ random variables with the joint distribution $F^{X,\underline{Y},\overline{Y}}$. The **Sharp Estimation Region (SER)** is defined as:

$$\mathit{SER}(\underline{\mathsf{Y}},\overline{\mathsf{Y}}) := \{\theta \in \Theta \mid \mathit{C}(X,Y,\underline{\mathsf{Y}},\overline{\mathsf{Y}}) = 1\}.$$

If the model is correctly specified, this region can also be written as:

$$\mathit{SER}(\underline{Y}, \overline{Y}) = \underset{\theta \in \Theta}{\mathsf{argmin}} \left(\inf_{\mathbf{Y} \leq .t. C(X, Y, \underline{Y}, \overline{Y}) = 1} L\left(F_{\theta}, F^{X, Y, \overline{Y}, \underline{Y}}\right) \right).$$

The Sharp Prediction Region (SPR) is defined as:

$$SPR(\underline{Y}, \overline{Y}) := \left\{ \underset{\theta \in \Theta}{\operatorname{argmin}} \ L\left(F_{\theta}, F^{X,Y,\overline{Y},\underline{Y}}\right) \mid Y \ \textit{s.t.} \ C(X,Y,\underline{Y},\overline{Y}) = 1
ight\}.$$

Now: Linear Model

We are only interested in the components (β_0, β_1) of an element $\theta = ((\beta_0, \beta_1), \sigma^2, \sigma_l, \sigma_u) \in SER$ and denote the set

$$\{(\beta_0,\beta_1) \mid ((\beta_0,\beta_1),\sigma^2,\sigma_I,\sigma_u) \in SER\}$$

as the sharp estimation region (analogously for the sharp prediction region).

Linear Model

$$SER = \{ \beta \in B | \mathbb{E}(\underline{Y} \mid X) \le X\beta \le \mathbb{E}(\overline{Y} \mid X) \}$$

$$SPR = \{ \underset{\beta \in B}{\operatorname{argmin}} \mathbb{E}((X\beta - Y)^2) \mid Y \in [\underline{Y}, \overline{Y}] \}$$

$$= \{ (X'X)^{-1}X'Y \mid Y \in [\underline{Y}, \overline{Y}] \}$$

Theorem

Let $I \subset \mathbb{R}^2$ be a compact convex set. Then there exist random variables X, Y, \overline{Y} such that

$$SER(X, \underline{Y}, \overline{Y}) = I,$$

namely:

$$\begin{array}{lcl} X & \sim & \textit{N}(0,1) \\ \underline{Y} & = & \min\{\beta_0 + \beta_1 X \mid (\beta_0,\beta_1) \in \textit{I}\} \\ \underline{Y} & = & \max\{\beta_0 + \beta_1 X \mid (\beta_0,\beta_1) \in \textit{I}\}. \end{array}$$

The Minkowski-Sum

$$M = \bigoplus_{i=1}^{n} l_i = \left\{ \sum_{i=1}^{n} p_i \mid p_i \in l_i \right\}$$

of n line-segments $l_i \subseteq \mathbb{R}^d$ is called a **zonotope**.

A zonotope is a convex, compact and centrally symmetric polytope with finite many extremepoints and central-symmetric facets.

The Minkowski-Sum

$$M = \bigoplus_{i=1}^{n} l_i = \left\{ \sum_{i=1}^{n} p_i \mid p_i \in l_i \right\}$$

of n line-segments $l_i \subseteq \mathbb{R}^d$ is called a **zonotope**.

A zonotope is a convex, compact and centrally symmetric polytope with finite many extremepoints and central-symmetric facets.

Definition

A closed, centrally symmetric convex set $Z \subseteq \mathbb{R}^d$ is called a **zonoid**, if it can be approximated arbitrarily closely by zonotopes (w.r.t. a metric, e.g. the Hausdorff distance).

For d=2 the zonoids are exactly the closed, centrally symmetric convex sets.

Let $I \subseteq \mathbb{R}^2$ be a zonoid in general position. Then there exists random variables $X,\underline{Y},\overline{Y}$ such that

$$SPR(X, \underline{Y}, \overline{Y}) = I.$$

Let $I\subseteq \mathbb{R}^2$ be a zonoid in general position. Then there exists random variables $X,\underline{Y},\overline{Y}$ such that

$$SPR(X, \underline{Y}, \overline{Y}) = I.$$

Lemma

Let $I = SPR(X, \underline{Y}^*, \overline{Y}^*) \subseteq \mathbb{R}^2$ be a zonoid and $E \subseteq SER(X, \underline{Y}^*, \overline{Y}^*)$ an arbitrary compact convex set. Then for every $\varepsilon > 0$ there exist random variables $X, \underline{Y}, \overline{Y}$ such that:

$$d_H(SPR(X, \underline{Y}, \overline{Y}), I) \leq \varepsilon$$

 $d_H(SER(X, \underline{Y}, \overline{Y}), E) \leq \varepsilon$

with the Hausdorff distance d_H .

Mappings between ordered sets

Mappings between ordered sets

Definition

Let (P, \leq) and (Q, \sqsubseteq) be partially ordered sets. A pair (f, g) of mappings $f: P \longrightarrow Q$ and $g: Q \longrightarrow P$ is called **adjunction**, if:

$$\forall p \in P \forall q \in Q: p \leq g(q) \iff f(p) \sqsubseteq q.$$

In this case, f is called **left adjoint** and g is called **right adjoint**.

• Dempster-Shafer-Theory: $Multivalued\ mapping\ \Gamma: X \longrightarrow 2^S\ with\ corresponding$

$$\tilde{\Gamma}:(2^X,\subseteq)\longrightarrow(2^S,\subseteq):A\mapsto\bigcup_{a\in A}\Gamma(a)$$
 and the operator

$$_*: (2^S, \subseteq) \longrightarrow (2^X, \subseteq): T \mapsto \{x \in X \mid \Gamma(x) \subseteq T\}.$$

The pair $(\tilde{\Gamma},\ _*)$ is an adjunction. From this, the ∞ -monotonicity of a Belief-function

$$Bel = P \circ *$$

with P a probability-measure follows immediately, since P is ∞ -monotone and * is meet-preserving. Furthermure it is clear, that also Bel \circ * is ∞ -monotone.

Lower coherent previsions:

$$f: \underline{P} \mapsto \mathcal{M}(\underline{P}) = \{p \in \mathscr{P}(\Omega) \mid p \geq \underline{P}\}$$
 and

 $g: M \mapsto \underline{P}_M: X \mapsto \inf_{p \in M} p(X)$ are an adjunction.

• Formal concept analysis: Incidence structure $\mathbb{K} = (G, M, I)$ with $G \dots$ objects, $M \dots$ attributes and a relation $I \subseteq G \times M$. $(g, m) \in I$ means object g has attribute m (also denoted as glm).

$$f: (2^{M}, \subseteq) \longrightarrow (2^{G}, \subseteq): X \mapsto \{g \in G | \forall m \in X : glm\}$$

"The set of all objects having all attributes in X"

$$g:(2^G,\supseteq)\longrightarrow (2^M,\supseteq):Y\mapsto \{m\in M\mid \forall g\in Y:glm\}$$

"The set of all joint attributes of all objects in Y".

The pair (f,g) is an adjunction.

Let (f,g) be an adjunction. Then the following holds:

A1 $g \circ f$ is extensive and $f \circ g$ is intensive.

Let (f,g) be an adjunction. Then the following holds:

A1 $g \circ f$ is extensive and $f \circ g$ is intensive.

A2 f and g are order-preserving.

Let (f,g) be an adjunction. Then the following holds:

A1 $g \circ f$ is extensive and $f \circ g$ is intensive.

A2 f and g are order-preserving.

A3 $f \circ g \circ f = f$ and $g \circ f \circ g = g$ and thus $f \circ g$ and $g \circ f$ are idempotent.

Let (f,g) be an adjunction. Then the following holds:

A1 $g \circ f$ is extensive and $f \circ g$ is intensive.

A2 f and g are order-preserving.

A3 $f \circ g \circ f = f$ and $g \circ f \circ g = g$ and thus $f \circ g$ and $g \circ f$ are idempotent.

A4 From A1 - A3 it follows, that $g \circ f$ is a hull operator and $f \circ g$ is a kernel operator.

Let (f,g) be an adjunction. Then the following holds:

- A1 $g \circ f$ is extensive and $f \circ g$ is intensive.
- A2 f and g are order-preserving.
- A3 $f \circ g \circ f = f$ and $g \circ f \circ g = g$ and thus $f \circ g$ and $g \circ f$ are idempotent.
- A4 From A1 A3 it follows, that $g \circ f$ is a hull operator and $f \circ g$ is a kernel operator.
- A5 The adjoints f and g are determining each other unambiguously.

- Let (f,g) be an adjunction. Then the following holds:
- A1 $g \circ f$ is extensive and $f \circ g$ is intensive.
- A2 f and g are order-preserving.
- A3 $f \circ g \circ f = f$ and $g \circ f \circ g = g$ and thus $f \circ g$ and $g \circ f$ are idempotent.
- A4 From A1 A3 it follows, that $g \circ f$ is a hull operator and $f \circ g$ is a kernel operator.
- A5 The adjoints f and g are determining each other unambiguously.
- A6 f is join-preserving and g is meet-preserving.

- If P is a complete lattice, than f is a left adjoint, if and only if f is join-preserving.
- If Q is a complete lattice, than g is a right adjoint, if and only if g is meet-preserving.

The mapping

$$\textit{SER} \quad : \quad (\mathcal{Z}(\Omega), \leq) \longrightarrow (2^{\textit{B}}, \subseteq) : (X, \underline{Y}, \overline{Y}) \mapsto \{\beta \mid \mathbb{E}(\underline{Y} \mid X) \leq \beta X \leq \mathbb{E}(\overline{Y} \mid x)\}$$

with

$$\boxed{ (X_1, \underline{Y_1}, \overline{Y_1}) \leq (X_2, \underline{Y_2}, \overline{Y_2}) :} \iff \boxed{ \boxed{ \mathbb{E}(\underline{Y_1} \mid X) \geq \mathbb{E}(\underline{Y_2} \mid X) \ \& \ \mathbb{E}(\overline{Y_1} \mid X) \leq \mathbb{E}(\overline{Y_2} \mid X) } }$$

$$\textit{i.e.:} \ (X_1, \underline{Y_1}, \overline{Y_1}) \textit{ is more precise}$$

$$\textit{than} \ (X_2, \underline{Y_2}, \overline{Y_2})$$

is a right adjoint.

The mapping

$$SER \quad : \quad (\mathcal{Z}(\Omega), \leq) \longrightarrow (2^B, \subseteq) : (X, \underline{Y}, \overline{Y}) \mapsto \{\beta \mid \mathbb{E}(\underline{Y} \mid X) \leq \beta X \leq \mathbb{E}(\overline{Y} \mid x)\}$$

with

$$\frac{\left[(X_{1}, \underline{Y}_{1}, \overline{Y}_{1}) \leq (X_{2}, \underline{Y}_{2}, \overline{Y}_{2}) : \right]}{\text{i.e.: } \left(X_{1}, \underline{Y}_{1}, \overline{Y}_{1} \right) \text{ is more precise} }$$

$$\text{than } \left(X_{2}, \underline{Y}_{2}, \overline{Y}_{2} \right)$$

is a right adjoint.

The corresponding left adjoint is the "prediction-operator":

$$PR: \qquad (2^B, \subseteq) \longrightarrow \left(\mathcal{Z}(\Omega), \leq): M \mapsto (X, \min_{\beta \in M} X\beta, \max_{\beta \in M} X\beta\right).$$

Thus, the following holds:

- A1 SER o PR is extensive and PR o SER is intensive.
- A2 PR and SER are order-preserving.
- A3 $PR \circ SER \circ PR = PR$ and $SER \circ PR \circ SER = SER$ and thus $PR \circ SER$ and $SER \circ PR$ are idempotent.
- A4 From A1 A3 it follows, that SER o PR is a hull operator and PR o SER is a kernel operator.
- A5 The adjoints PR and SER are determining each other unambiguously.
- A6 PR is join-preserving and SER is meet-preserving.

A1 SER • PR is extensive and PR • SER is intensive.

A1 SER • PR is extensive and PR • SER is intensive.

A1 SER o PR is extensive and PR o SER is intensive.

A1 SER • PR is extensive and PR • SER is intensive.

A1 SER • PR is extensive and PR • SER is intensive.

Thus, the following holds:

- A1 SER o PR is extensive and PR o SER is intensive.
- A2 PR and SER are order-preserving.
- A3 $PR \circ SER \circ PR = PR$ and $SER \circ PR \circ SER = SER$ and thus $PR \circ SER$ and $SER \circ PR$ are idempotent.
- A4 From A1 A3 it follows, that SER o PR is a hull operator and PR o SER is a kernel operator.
- A5 The adjoints PR and SER are determining each other unambiguously.
- A6 PR is join-preserving and SER is meet-preserving.

The mapping

$$\textit{SPR}: (\mathcal{Z}(\Omega), \leq) \longrightarrow (2^{\textit{B}}, \subseteq): (X, \underline{Y}, \overline{Y}) \mapsto \{(X'X)^{-1}X'Y \mid \underline{Y} \leq Y \leq \overline{Y}\}$$

is no right adjoint, since it is not meet-preserving.

In general $SPR(Z_1 \land Z_2) \neq SPR(Z_1) \cap SPR(Z_2)$, since the intersection of two zonoids is in general not a zonoid.

Thus, in general, only SPR \circ PR \circ SPR \supset SPR holds.

Definition

Let $E:(P,\leq)\longrightarrow (Q,\sqsubseteq)$ be a mapping.

The monotone hull of E is defined as:

$$H(E)$$
 : $(P, \leq) \longrightarrow (Q, \sqsubseteq) : X \mapsto \bigvee_{Y \leq X} E(Y)$.

The monotone kernel of E is defined as:

$$K(E)$$
: $(P, \leq) \longrightarrow (Q, \sqsubseteq) : X \mapsto \bigwedge_{Y>X} E(Y).$

These set-valued mappings are both order-preserving

$$(\textit{i.e.} \ X \leq Y \Longrightarrow (\textit{H}(\textit{E}))(X) \sqsubseteq (\textit{H}(\textit{E}))(Y) \quad \& \quad (\textit{K}(\textit{E}))(X) \sqsubseteq (\textit{K}(\textit{E}))(Y)).$$

Lemma

Let the criterion-function $Q: B \longrightarrow \mathbb{R}$ be defined as:

$$Q(\beta) = \int \left\{ \left(\mathbb{E}(\underline{Y}|x) - x\beta \right)_{+}^{2} + \left(\mathbb{E}(\overline{Y}|x) - x\beta \right)_{-}^{2} \right\} d\mathbb{P}(x).$$

Lemma

Let the criterion-function $Q: B \longrightarrow \mathbb{R}$ be defined as:

$$Q(\beta) = \int \left\{ \left(\mathbb{E}(\underline{Y}|x) - x\beta \right)_{+}^{2} + \left(\mathbb{E}(\overline{Y}|x) - x\beta \right)_{-}^{2} \right\} d\mathbb{P}(x).$$

Then the criterion-based mapping

$$E_Q: \mathcal{Z}(\Omega) \longrightarrow 2^B: (X, \underline{Y}, \overline{Y}) \mapsto \operatorname*{argmin}_{\beta \in B} Q(\beta)$$

is a source of SER and SPR:

Lemma

Let the criterion-function $Q: B \longrightarrow \mathbb{R}$ be defined as:

$$Q(\beta) = \int \left\{ \left(\mathbb{E}(\underline{Y}|x) - x\beta \right)_{+}^{2} + \left(\mathbb{E}(\overline{Y}|x) - x\beta \right)_{-}^{2} \right\} d\mathbb{P}(x).$$

Then the criterion-based mapping

$$E_Q: \mathcal{Z}(\Omega) \longrightarrow 2^B: (X, \underline{Y}, \overline{Y}) \mapsto \operatorname*{argmin}_{\beta \in B} Q(\beta)$$

is a source of SER and SPR:

$$SPR = H(E_Q)$$

 $SER = K(E_Q).$

Estimation of SER and SPR

Estimation of SER and SPR

Lemma

In general, there is no monotone, nonpartial, consistent estimator of SER.

Estimation of SER and SPR

Lemma

In general, there is no monotone, nonpartial, consistent estimator of SER.

Lemma

In general, there is no consistent and (in a certain sense) robust estimator of SER.

- Beresteanu, A., Molinari, F. (2008) Asymptotic Properties for a Class of Partially Identified Models, Econometrica, vol. 76, issue 4, pages 763-814.
- Chernozhukov, V., Hong, H., Tamer, E. (2007) Estimation and Confidence Regions for Parameter Sets in Econometric Models, Econometrica, vol. 75, issue 5, pages 1243-1284.
- Bolker, E.D. (1971) The Zonoid Problem, The American Mathematical Monthly, vol. 78, no. 5, pages 529-531