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Definition
Let P := {Pθ | θ ∈ Θ} be a statsitical model and

• Y , . . . unobservable random variables,

• X ,Y,Y, . . . observable random variables w.r.t an underlying
probability space (Ω,F ,P).

• The joint distribution of the random Variables X ,Y ,Y,Y under a
model Pθ is denoted with Fθ and the joint distribution under the
„true model“ P is denoted with FX ,Y ,Y,Y.

• The unobserved variables fullfill a certain condition
C (X ,Y ,Y,Y) = 1.
e.g. Y ≤ Y ≤ Y or ∀X : E(Y | X ) ≤ E(Y | X ) ≤ E(Y | X ).
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Definition
• Two parameters θ1 and θ2 are undistinguishable (i.e. θ1 ∼ θ2) if the
corresponding models Pθ1 and Pθ2 are empirically undistinguishable,
which means, that the distributions of the observable variables are
the same:

FX ,Y,Y
θ1

= FX ,Y,Y
θ2

.
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Definition
A statistical model P is called point-identified, if any two different
parameters θ1 and θ2 are empirically distinguishable, i.e.:

∼ = ∆Θ = {(θ, θ) | θ ∈ Θ}.

Otherwise it is called partially identified.
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Example
The simple linear model

Θ = B × R≥0 ×Z(R≥0)×Z(R≥0)

with B = R2. For θ = (β, σ2, σl , σu) ∈ Θ, the random variables are
defined as:

Y = Xβ + ε

Y = Xβ + ε− σl

Y = Xβ + ε+ σu

with ε ∼ N(0, σ2I ).

Here we are only interested in the values of β ∈ B.
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This model is only partially identified. For example

((β0, β1), σ2, 0, 1) ∼ ((β0 + 1, β1), σ2, 1, 0).

Moreover, the quotient space Θ/∼ ist not of the form

Θ/∼ = B/≈ × „rest“,

so we must factorize the whole space Θ and not only the interesting B to
make the model point-identified.
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Estimation ←− Model −→ Pediction

„model as a truth to be estimated “ „model as a tool to be applied“

e.g.: least squares estimator ←− linear model −→ best linear predictor
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„Estimation“

Given distribution FY of Y of the class {FY
θ | θ ∈ Θ},

find (all) θ, such that

Y ∼ Fθ

⇐⇒ FY = FY
θ

⇐⇒ L(FY
θ ,F ) = 0

for some distance-function L(·, ·).
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„Prediction“

Given FY of the class {FY
θ | θ ∈ Θ} ,

find (all) θ, such that

L(Fθ,FY )

is minimal.

• also makes sense, if FY /∈ {FY
θ | θ ∈ Θ}.

• if the model is correctly specified, then „prediction“ and „estimation“
are „nearly the same“.

The actual problem is, that FY is unknown =⇒ later.
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Definition
Let P = {Pθ | θ ∈ Θ} be a statistical model with the corresponding joint
distributions {FX ,Y ,Y,Y

θ | θ ∈ Θ} and X ,Y,Y random variables with the
joint distribution FX ,Y,Y. The Sharp Estimation Region (SER) is
defined as:

SER(Y,Y) := {θ ∈ Θ | C (X ,Y ,Y,Y) = 1}.

If the model is correctly specified, this region can also be written as:

SER(Y,Y) = argmin
θ∈Θ

(
inf

Ys.t.C(X ,Y ,Y,Y)=1
L
(
Fθ,FX ,Y ,Y,Y

))
.

The Sharp Prediction Region (SPR) is defined as:

SPR(Y,Y) :=

{
argmin
θ∈Θ

L
(
Fθ,FX ,Y ,Y,Y

)
| Y s.t. C (X ,Y ,Y,Y) = 1

}
.
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Now: Linear Model

We are only interested in the components (β0, β1) of an element
θ = ((β0, β1), σ2, σl , σu) ∈ SER and denote the set

{(β0, β1) | ((β0, β1), σ2, σl , σu) ∈ SER}

as the sharp estimation region (analogously for the sharp prediction
region).
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Linear Model

SER = {β ∈ B|E(Y | X ) ≤ Xβ ≤ E(Y | X )}

SPR = {argmin
β∈B

E((Xβ − Y )2) | Y ∈ [Y,Y]}

= {(X ′X )−1X ′Y | Y ∈ [Y,Y]}
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Theorem
Let I ⊂ R2 be a compact convex set. Then there exist random variables
X ,Y,Y such that

SER(X ,Y,Y) = I ,

namely:

X ∼ N(0, 1)

Y = min{β0 + β1X | (β0, β1) ∈ I}

Y = max{β0 + β1X | (β0, β1) ∈ I}.
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Definition
The Minkowski-Sum

M =
n⊕

i=1

li =

{
n∑

i=1

pi | pi ∈ li

}

of n line-segments li ⊆ Rd is called a zonotope.
A zonotope is a convex, compact and centrally symmetric polytope with
finite many extremepoints and central-symmetric facets.

Definition
A closed, centrally symmetric convex set Z ⊆ Rd is called a zonoid, if it
can be approximated arbitrarily closely by zonotopes (w.r.t. a metric, e.g.
the Hausdorff distance).
For d = 2 the zonoids are exactly the closed, centrally symmetric convex
sets.
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Lemma
Let I ⊆ R2 be a zonoid in general position. Then there exists random
variables X ,Y,Y such that

SPR(X ,Y,Y) = I .

Lemma
Let I = SPR(X ,Y∗,Y

∗
) ⊆ R2 be a zonoid and E ⊆ SER(X ,Y∗,Y

∗
) an

arbitrary compact convex set. Then for every ε > 0 there exist random
variables X ,Y,Y such that:

dH(SPR(X ,Y,Y), I ) ≤ ε

dH(SER(X ,Y,Y),E ) ≤ ε

with the Hausdorff distance dH .
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Mappings between ordered sets

Definition
Let (P,≤) and (Q,v) be partially ordered sets. A pair (f , g) of
mappings f : P −→ Q and g : Q −→ P is called adjunction, if:

∀p ∈ P∀q ∈ Q : p ≤ g(q) ⇐⇒ f (p) v q.

In this case, f is called left adjoint and g is called right adjoint.
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Examples of adjunctions

• Dempster-Shafer-Theory:
Multivalued mapping Γ : X −→ 2S with corresponding

Γ̃ : (2X ,⊆) −→ (2S ,⊆) : A 7→
⋃

a∈A
Γ(a) and the operator

∗ : (2S ,⊆) −→ (2X ,⊆) : T 7→ {x ∈ X | Γ(x) ⊆ T}.

The pair (Γ̃, ∗) is an adjunction.
From this, the ∞-monotonicity of a Belief-function

Bel = P ◦ ∗

with P a probability-measure follows immediately, since P is
∞-monotone and ∗ is meet-preserving. Furthermure it is clear, that also
Bel ◦ ∗ is ∞-monotone.
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Examples of adjunctions

• Lower coherent previsions:
f : P 7→ M(P) = {p ∈P(Ω) | p ≥ P} and

g : M 7→ PM : X 7→ inf
p∈M

p(X ) are an adjunction.
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Examples of adjunctions

• Formal concept analysis:
Incidence structure K = (G ,M, I )
with G . . . objects, M . . . attributes and a relation I ⊆ G ×M.
(g ,m) ∈ I means object g has attribute m (also denotad as gIm).

f : (2M ,⊆) −→ (2G ,⊆) : X 7→ {g ∈ G |∀m ∈ X : gIm}

„The set of all objects having all attributes in X “

g : (2G ,⊇) −→ (2M ,⊇) : Y 7→ {m ∈ M | ∀g ∈ Y : gIm}

„The set of all joint attributes of all objects in Y “.

The pair (f , g) is an adjunction.
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Lemma
Let (f , g) be an adjunction. Then the following holds:

A1 g ◦ f is extensive and f ◦ g is intensive.

A2 f and g are order-preserving.

A3 f ◦ g ◦ f = f and g ◦ f ◦ g = g and thus f ◦ g and g ◦ f are
idempotent.

A4 From A1 - A3 it follows, that g ◦ f is a hull operator and f ◦ g is a
kernel operator.

A5 The adjoints f and g are determining each other unambiguously.

A6 f is join-preserving and g is meet-preserving.
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Lemma
• If P is a complete lattice, than f is a left adjoint, if and only if f is
join-preserving.

• If Q is a complete lattice, than g is a right adjoint, if and only if g is
meet-preserving.
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Lemma
The mapping

SER : (Z(Ω),≤) −→ (2B ,⊆) : (X ,Y,Y) 7→ {β | E(Y |X ) ≤ βX ≤ E(Y |x)}

with

(X1,Y1,Y1) ≤ (X2,Y2,Y2): ⇐⇒ E(Y1 | X ) ≥ E(Y2 | X ) & E(Y1 | X ) ≤ E(Y2 | X )

i.e.: (X1,Y1,Y1) is more precise

than (X2,Y2,Y2)

is a right adjoint.

The corresponding left adjoint is the „prediction-operator“:

PR : (2B ,⊆) −→
(
Z(Ω),≤) : M 7→ (X , min

β∈M
Xβ,max

β∈M
Xβ
)
.
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Lemma
Thus, the following holds:

A1 SER ◦ PR is extensive and PR ◦ SER is intensive.

A2 PR and SER are order-preserving.

A3 PR ◦ SER ◦ PR = PR and SER ◦ PR ◦ SER = SER and thus
PR ◦ SER and SER ◦ PR are idempotent.

A4 From A1 - A3 it follows, that SER ◦ PR is a hull operator and
PR ◦ SER is a kernel operator.

A5 The adjoints PR and SER are determining each other
unambiguously.

A6 PR is join-preserving and SER is meet-preserving.
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A1 SER ◦ PR is extensive and PR ◦ SER is intensive.

A2 PR and SER are order-preserving.

A3 PR ◦ SER ◦ PR = PR and SER ◦ PR ◦ SER = SER and thus
PR ◦ SER and SER ◦ PR are idempotent.

A4 From A1 - A3 it follows, that SER ◦ PR is a hull operator and
PR ◦ SER is a kernel operator.

A5 The adjoints PR and SER are determining each other
unambiguously.

A6 PR is join-preserving and SER is meet-preserving.
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Lemma
The mapping
SPR : (Z(Ω),≤) −→ (2B ,⊆) : (X ,Y,Y) 7→ {(X ′X )−1X ′Y | Y ≤ Y ≤ Y}
is no right adjoint, since it is not meet-preserving.
In general SPR(Z1 ∧ Z2) 6= SPR(Z1) ∩ SPR(Z2), since the intersection of two
zonoids is in general not a zonoid.
Thus, in general, only SPR ◦ PR ◦ SPR ⊃ SPR holds.
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Definition
Let E : (P,≤) −→ (Q,v) be a mapping.
The monotone hull of E is defined as:

H(E ) : (P,≤) −→ (Q,v) : X 7→
∨

Y≤X

E (Y ).

The monotone kernel of E is defined as:

K (E ) : (P,≤) −→ (Q,v) : X 7→
∧

Y≥X

E (Y ).

These set-valued mappings are both order-preserving
(i.e: X ≤ Y =⇒ (H(E))(X ) v (H(E))(Y ) & (K(E))(X ) v (K(E))(Y )).
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A criterion-function-based mapping

Lemma
Let the criterion-function Q : B −→ R be defined as:

Q(β) =

∫ {
(E(Y |x)− xβ)2

+ +
(
E(Y |x)− xβ

)2
−

}
dP(x).

Then the criterion-based mapping

EQ : Z(Ω) −→ 2B : (X ,Y,Y) 7→ argmin
β∈B

Q(β)

is a source of SER and SPR:

SPR = H(EQ)

SER = K (EQ).
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Estimation of SER and SPR

Lemma
In general, there is no monotone, nonpartial, consistent estimator of SER.

Lemma
In general, there is no consistent and (in a certain sense) robust estimator
of SER.
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