partial identification in linear models

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$Y^* = X\beta + \varepsilon$$

2 / 33

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$Y^* = X\beta + \varepsilon$$

with a fixed design-matrix

$$X = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ & & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix},$$

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$Y^* = X\beta + \varepsilon$$

with a fixed design-matrix

$$X = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ & & & \vdots & \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix},$$

a multivariat normal i.i.d. error ε

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$Y^* = X\beta + \varepsilon$$

with a fixed design-matrix

$$X = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ & & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix},$$

a multivariat normal i.i.d. error ε and a dependend n dimensional random variable $Y^* = (Y_1^*, \dots, Y_n^*)$,

We have to estimate the parameter $\beta \in \mathbb{R}^{p+1}$ of a linear model

$$Y^* = X\beta + \varepsilon$$

with a fixed design-matrix

$$X = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ & & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix},$$

a multivariat normal i.i.d. error ε and a dependend n dimensional random variable $Y^* = (Y_1^*, \dots, Y_n^*)$, that is only known to lie in the intervall $[\underline{Y}, \overline{Y}]$ of the known random variables Y and \overline{Y} .

One simple approach:

3 / 33

One simple approach:

look at all possible candidates Y for the unknown Y^* compatible with the restriction $Y \in [\underline{Y}, \overline{Y}]$

3 / 33

One simple approach:

look at all possible candidates Y for the unknown Y^* compatible with the restriction $Y \in [\underline{Y}, \overline{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

One simple approach:

look at all possible candidates Y for the unknown Y^* compatible with the restriction $Y \in [\underline{Y}, \overline{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

$$\hat{S} := {\hat{\beta}(y)|y \in [\underline{y}, \overline{y}]}$$

One simple approach:

look at all possible candidates Y for the unknown Y^* compatible with the restriction $Y \in [\underline{Y}, \overline{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

$$\hat{S} := {\hat{\beta}(y)|y \in [\underline{y}, \overline{y}]}$$

where \underline{y} and \overline{y} are n -dimensional samples from \underline{Y} and \overline{Y} and y is a n-dimensional vector satisfying

$$y_i \in [\underline{Y}_i, \ \overline{Y}_i], i = 1, \ldots, n,$$

One simple approach:

look at all possible candidates Y for the unknown Y^* compatible with the restriction $Y \in [\underline{Y}, \overline{Y}]$ and estimate for all such candidates Y the corresponding estimates $\hat{\beta}$ to get the set-valued estimator

$$\hat{S} := {\hat{\beta}(y)|y \in [\underline{y}, \overline{y}]}$$

where \underline{y} and \overline{y} are n -dimensional samples from \underline{Y} and \overline{Y} and y is a n-dimensional vector satisfying

$$y_i \in [\underline{Y}_i, \ \overline{Y}_i], i = 1, \ldots, n,$$

which stands for a possible sample of Y compatible with the interval-valued observed data

Choose the classical linear estimator

Choose the classical linear estimator

$$\hat{\beta}(y) = (X'X)^{-1}X'y.$$

Choose the classical linear estimator

$$\hat{\beta}(y) = (X'X)^{-1}X'y.$$

to get an estimate $\hat{\beta}(y)$ for all y.

$$\hat{\beta}(y) =$$

$$\hat{\beta}(y) = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

$$\hat{\beta}(y) = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x}^2 \end{pmatrix}^{-1} \begin{pmatrix} \bar{y} \\ \bar{x} \cdot \bar{y} \end{pmatrix}$$

$$\hat{\beta}(y) = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x}^2 \end{pmatrix}^{-1} \begin{pmatrix} \bar{y} \\ \bar{x} \cdot \bar{y} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x}^2 \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} y_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i \end{pmatrix}$$

$$\hat{\beta}(y) = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x}^2 \end{pmatrix}^{-1} \begin{pmatrix} \bar{y} \\ \overline{x \cdot y} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x}^2 \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n y_i \\ \frac{1}{n} \sum_{i=1}^n x_i \cdot y_i \end{pmatrix}$$

$$=: P \cdot \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n y_i \\ \frac{1}{n} \sum_{i=1}^n x_i \cdot y_i \end{pmatrix}$$

The calculation of $\hat{\beta}(y)$ for all $y \in [\underline{y}, \overline{y}]$ is nothing else than the computation of the linear image of the 2 dimensional minkowski mean of the n line segments p_i formed by the points $(\underline{y}_i, x_i \cdot \underline{y}_i)$ and $(\overline{y}_i, x_i \cdot \overline{y}_i)$ under the mapping induced by the matrix P:

$$\hat{S} = P \cdot \left(\frac{1}{n} \bigoplus_{i=1}^{n} p_i \right)$$

Definition

The Minkowski Sum of two sets A, B in \mathbb{R}^d is defined as:

$$A \oplus B := \{a + b | a \in A, b \in B\}.$$

Definition

The Minkowski Sum of two sets A, B in \mathbb{R}^d is defined as:

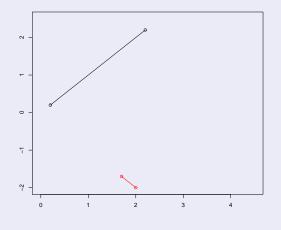
$$A \oplus B := \{a + b | a \in A, b \in B\}.$$

The Minkowski Mean of n pointsets A_i, \ldots, A_n is defined as:

$$\frac{1}{n}\bigoplus_{i=1}^{n}A_{i}:=\left\{\frac{1}{n}\sum_{i=1}^{n}a_{i}\middle|a_{i}\in A_{i},i=1,\ldots,n\right\}$$

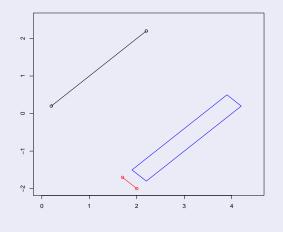
Example

The Minkowski Sum of two line segments in \mathbb{R}^2 :



Example

The Minkowski Sum of two line segments in \mathbb{R}^2 :



10 / 33

a) it is

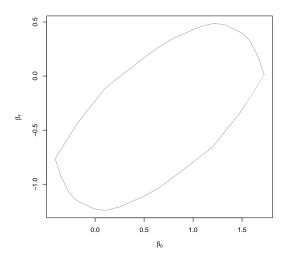
10 / 33

a) it is (, as the linear image of a convex, bounded set)

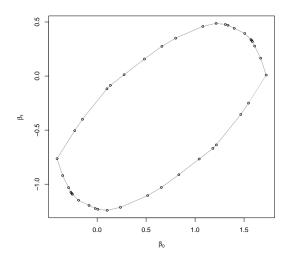
a) it is (, as the linear image of a convex, bounded set) convex and bounded.

10 / 33

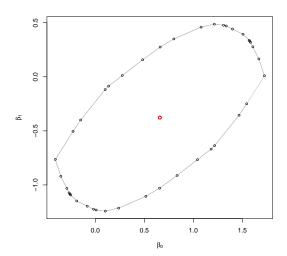
a) it is (, as the linear image of a convex, bounded set) convex and bounded.



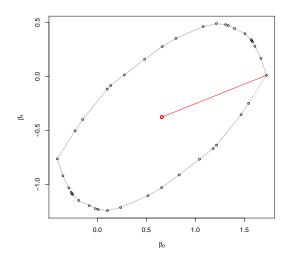
a) it has finite many extremepoints.



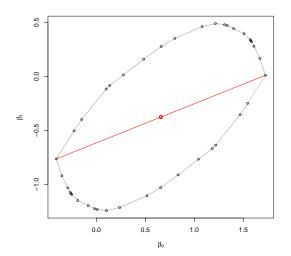
b) it is central symmetric with the center $\hat{\beta}(\frac{y+\bar{y}}{2})$.



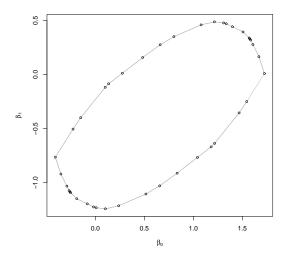
c) it is central symmetric with the center $\hat{\beta}(\frac{y+\bar{y}}{2})$.



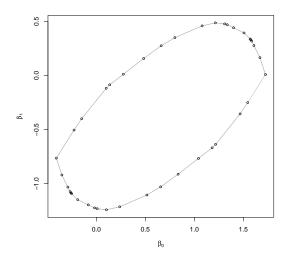
c) it is central symmetric with the center $\hat{\beta}(\frac{y+\bar{y}}{2})$.



c) its facets are central symmetric, too.



c) in geometry it is, as the Minkowski Sum of n line segments, called a zonotope.



$$\hat{S} = \{A \cdot y | y \in [\underline{y}, \overline{y}]\}$$

$$\hat{S} = \{A \cdot y | y \in [\underline{y}, \overline{y}]\}$$

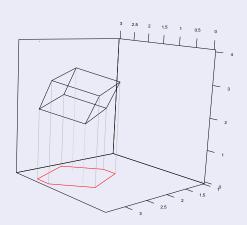
is the linear image of a *n*-dimensional cuboid

$$\hat{S} = \{A \cdot y | y \in [\underline{y}, \overline{y}]\}$$

is the linear image of a n-dimensional cuboid or equivalently the affine linear image of the n-dimensional unit-cube:

$$\hat{S} = \{A \cdot y | y \in [\underline{y}, \overline{y}]\}$$

is the linear image of a n-dimensional cuboid or equivalently the affine linear image of the n-dimensional unit-cube:



a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[y, \bar{y}]$ and have the following structure:

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[y, \bar{y}]$ and have the following structure:

$$y = y_{\geq c}^{u} = \begin{cases} \overline{y}_{i} & \text{if } x_{i} \geq c \\ \underline{y}_{i} & \text{else} \end{cases}$$
 (1)

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\underline{y}, \overline{y}]$ and have the following structure:

$$y = y_{\geq c}^{u} = \begin{cases} \overline{y}_{i} & \text{if } x_{i} \geq c \\ \underline{y}_{i} & \text{else} \end{cases}$$
 (1)

or

$$y = y_{\geq c}^{I} = \begin{cases} \underline{y}_{i} & \text{if } x_{i} \geq c \\ \overline{y}_{i} & \text{else} \end{cases}$$
 (2)

for some $c \in \mathbb{R}$.

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[\underline{y}, \overline{y}]$ and have the following structure:

$$y = y_{\geq c}^{u} = \begin{cases} \overline{y}_{i} & \text{if } x_{i} \geq c \\ \underline{y}_{i} & \text{else} \end{cases}$$
 (1)

or

$$y = y_{\geq c}^{I} = \begin{cases} \underline{y}_{i} & \text{if } x_{i} \geq c \\ \overline{y}_{i} & \text{else} \end{cases}$$
 (2)

for some $c \in \mathbb{R}$. Here we call these y pseudodata.

a) The inverse images y of the extremepoints of \hat{S} are extremepoints of the cuboid $[y, \overline{y}]$ and have the following structure:

$$y = y_{\geq c}^{u} = \begin{cases} \overline{y}_{i} & \text{if } x_{i} \geq c \\ \underline{y}_{i} & \text{else} \end{cases}$$
 (1)

or

$$y = y_{\geq c}^{l} = \begin{cases} \underline{y}_{i} & \text{if } x_{i} \geq c \\ \overline{y}_{i} & \text{else} \end{cases}$$
 (2)

for some $c \in \mathbb{R}$. Here we call these y pseudodata. It suffices to take only $c = x_i, i = 1, ..., n$.

□ > <□ > <□ > <□ >

b) all pseudodata are mapped to the boundary of \hat{S} .

- b) all pseudodata are mapped to the boundary of \hat{S} .
- c) if there are no ties in x, then all pseudodata are actually mapped to extremepoints of \hat{S} .

- b) all pseudodata are mapped to the boundary of \hat{S} .
- c) if there are no ties in x, then all pseudodata are actually mapped to extremepoints of \hat{S} .
- \Rightarrow it suffices to look at all pseudodata instead of the whole cuboid to observe $\hat{\mathsf{S}}$:

- b) all pseudodata are mapped to the boundary of \hat{S} .
- c) if there are no ties in x, then all pseudodata are actually mapped to extremepoints of \hat{S} .

 \Rightarrow it suffices to look at all pseudodata instead of the whole cuboid to observe \hat{S} :

$$\hat{S} = \text{co} \{A \cdot y | y \text{ is a pseudodata } \}$$

(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_1, \ldots, p_n) :

(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_1, \ldots, p_n) :

$$\hat{S} = P \cdot \left(\frac{1}{n} \bigoplus_{i=1}^{n} p_i\right)$$

(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_1, \ldots, p_n) :

$$\hat{S} = P \cdot \left(\frac{1}{n} \bigoplus_{i=1}^{n} p_i \right)$$

Since
$$\hat{S} = \left\{ P \cdot \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} y_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i \end{pmatrix} \middle| y \in [\underline{y}, \overline{y}] \right\}$$

(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_1, \ldots, p_n) :

$$\hat{S} = P \cdot \left(\frac{1}{n} \bigoplus_{i=1}^{n} p_i \right)$$

Since
$$\hat{S} = \left\{ P \cdot \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} y_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i \end{pmatrix} \middle| y \in [\underline{y}, \overline{y}] \right\}$$

we could understand \hat{S} as a point-estimator, which estimates the linear image of the (set-valued) so called Aumann Expectation

(1) \hat{S} as the linear image of the minkowski mean of line segments, which could be also seen as the linear image of the minkowski mean of the set-valued data point (p_1, \ldots, p_n) :

$$\hat{S} = P \cdot \left(\frac{1}{n} \bigoplus_{i=1}^{n} p_i \right)$$

Since
$$\hat{S} = \left\{ P \cdot \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} y_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i \end{pmatrix} \middle| y \in [\underline{y}, \overline{y}] \right\}$$

we could understand \hat{S} as a point-estimator, which estimates the linear image of the (set-valued) so called Aumann Expectation

$$\left\{ \begin{pmatrix} \mathbb{E}(Y) \\ \mathbb{E}(X \cdot Y) \end{pmatrix} \middle| y \in [\underline{y}, \overline{y}] \right\} \text{ under } P.$$

So \hat{S} could at first hand be seen as a (set-valued) pointestimator for a (set-valued) parameter (the Aumann Expectation). Here we can use random set theory to analyze the estimator.

(2) \hat{S} as the collection of all precise pointestimators obtained by all possible data-completions $y \in [y, \overline{y}]$.

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidence region.

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d :

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d : one suggestion often quoted as natural:

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d : one suggestion often quoted as natural: the Hausdorff- distance:

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d : one suggestion often quoted as natural: the Hausdorff- distance:

$$H(A, B) := max\{dH(A, B), dH(B, A)\}$$

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d :

one suggestion often quoted as natural: the Hausdorff- distance:

$$H(A,B) := \max\{dH(A,B), dH(B,A)\}$$

with the directed Hausdorff-distance

one suggestion often quoted as natural: the Hausdorff- distance:

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d :

with the directed Hausdorff-distance

$$dH(A,B) := \sup_{a \in A} \inf_{b \in B} d(a,b)$$

 $H(A,B) := max\{dH(A,B),dH(B,A)\}$

(1) analyze or estimate the distribution of the pointestimator \hat{S} to construct a confidenceregion. Since \hat{S} is set-valued, we need a propper metric for the space of sets in \mathbb{R}^d :

one suggestion often quoted as natural: the Hausdorff- distance:

$$H(A, B) := max\{dH(A, B), dH(B, A)\}$$

with the directed Hausdorff-distance

$$dH(A,B) := \sup_{a \in A} \inf_{b \in B} d(a,b)$$

and a metric d in \mathbb{R}^d (e.g. the euclidean metric).

This approach is developed in Beresteanu, Molinari 2008:

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^* and look on the distribution of $H(\hat{S}, \hat{S}^*)$. From this distribution they obtain critical value c_{α} and construct the confidence collection

$$HCR = \bigcup_{\substack{\boldsymbol{s} \subset \mathbb{R}^d \\ dH(S, \hat{S}) \leq c_{\alpha}}} S.$$

This confidence region covers the whole sharp identification region with probability at least α .

There the authors estimate \hat{S} and draw bootstrap-samples from the data to estimate further \hat{S}^* and look on the distribution of $H(\hat{S}, \hat{S}^*)$. From this distribution they obtain critical value c_{α} and construct the confidence collection

$$HCR = \bigcup_{\substack{\mathbf{s}_{\subset \mathbb{R}^d} \\ dH(S, \hat{S}) \le c_{\alpha}}} S$$

This confidence region covers the whole sharp identification region with probability at least α .

If one is in the situation, that there is a precise parameter β behind the scenes, it would be sufficient, that a confidenceregion covers not necessarily the whole sharp identification region but only the true parameter β with at least probability α , which is a weaker demand. So in this situation HCR is a (conservative) confidenceregion for the true parameter β .

25 / 33

$$SCR := \{CE(y) | y \in [\underline{y}, \overline{y}] \}$$

$$SCR := \{CE(y) | y \in [\underline{y}, \overline{y}] \}$$

with the classical confidence-ellipsoid

$$SCR := \{CE(y) | y \in [\underline{y}, \overline{y}] \}$$

with the classical confidence-ellipsoid

$$\mathit{CE}(y) := \left\{ \beta \mid (\beta - \hat{\beta}(y))'(X'X)(\beta - \hat{\beta}(y)) \leq (p+1) \cdot \hat{\sigma}^2(y) \cdot \mathit{F}_{1-\alpha}(p+1, n-p+1) \right\}.$$

But how do we compute this confidence region?

But how do we compute this confidence region?

Lemma

Let a partially identified linear model $y = \beta_0 + \beta_1 \cdot x$ be given.

But how do we compute this confidence region?

Lemma

Let a partially identified linear model $y = \beta_0 + \beta_1 \cdot x$ be given.

Under some not too strong conditions the simple confidenceregion SCR is a subset of the ellipsoid-type-confidenceregion

$$ECR := \operatorname{co} \left(\bigcup_{c \in \{x_1, \dots, x_n\}} CE(y_{\geq c}^u) \cup CE(y_{\geq c}^l) \right)$$

Definition

Let the functions f, g and esd be defined as:

$$f: \qquad \hat{S} \longrightarrow [\underline{y}, \overline{y}] : \beta \mapsto Q^{-1}(\beta) = \{ y \in [\underline{y}, \overline{y}] | Qy = \beta \}$$

$$g: \qquad \hat{S} \longrightarrow \mathbb{R} : \beta \mapsto \sup_{y \in f(\beta)} esd(y)$$

$$esd : [\underline{y}, \overline{y}] \longrightarrow \mathbb{R} : y \mapsto esd(y) := sd(y - X\hat{\beta}(y))$$

$$= sd(\varepsilon)$$

$$= \frac{n}{n - p - 1} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\right)^{2}}.$$

Lemma

Let a partially identified linear model $y = \beta_0 + \beta_1 \cdot x$ with x_i, \underline{y}_i and \overline{y}_i i.i.d with existing expectations and variances and a nondegenerate sharp identification region S (meaning S has nonempty interior) be given.

If the function g is greater than a positive constant c (independent from n) with probability 1 for all $\hat{\beta}$ of the boundary $\partial \hat{S}$ of the Sir-estimator \hat{S} , then the simple confidenceregion is a subset of the ellipsoid-type-confidenceregion

$$ECR := \operatorname{co} \left(\bigcup_{c \in \{x_1, \dots, x_n\}} CE(y_{\geq c}^u) \cup CE(y_{\geq c}^l) \right)$$

with arbitrary high probability p < 1, if n = n(p) is large enough.

for 4 coarsening-processes:

29 / 33

• coarsening 1:
$$y = 10 \cdot x + 10 + \varepsilon$$
, $\varepsilon \sim N(0, 1)$
 $\underline{y} = y - \exp(\varepsilon_2)$, $\overline{y} = y + \exp(\varepsilon_2)$, $\varepsilon, \varepsilon_2 \sim N(0, 1)$,

- coarsening 1: $y = 10 \cdot x + 10 + \varepsilon$, $\varepsilon \sim N(0, 1)$ $y = y - \exp(\varepsilon_2)$, $\overline{y} = y + \exp(\varepsilon_2)$, $\varepsilon, \varepsilon_2 \sim N(0, 1)$,
- coarsening 2: $y = min\{y, y_2\}, \quad \overline{y} = max\{y, y_2\}, \quad y_2 = 13 \cdot x + 9 + \varepsilon_2$

- coarsening 1: $y = 10 \cdot x + 10 + \varepsilon$, $\varepsilon \sim N(0, 1)$ $y = y - \exp(\varepsilon_2)$, $\overline{y} = y + \exp(\varepsilon_2)$, $\varepsilon, \varepsilon_2 \sim N(0, 1)$,
- coarsening 2: $y = min\{y, y_2\}, \quad \overline{y} = max\{y, y_2\}, \quad y_2 = 13 \cdot x + 9 + \varepsilon_2$
- coarsening 3: $y = y \varepsilon^2 \cdot 10^{-5}$, $\overline{y} = y + \varepsilon_2^2 \cdot 10^{-5} \cdot p$, $p \sim B(n, 0.05)$

- coarsening 1: $y = 10 \cdot x + 10 + \varepsilon$, $\varepsilon \sim N(0, 1)$ $y = y - \exp(\varepsilon_2)$, $\overline{y} = y + \exp(\varepsilon_2)$, $\varepsilon, \varepsilon_2 \sim N(0, 1)$,
- coarsening 2: $y = min\{y, y_2\}, \quad \overline{y} = max\{y, y_2\}, \quad y_2 = 13 \cdot x + 9 + \varepsilon_2$
- coarsening 3: $y = y \varepsilon^2 \cdot 10^{-5}$, $\overline{y} = y + \varepsilon_2^2 \cdot 10^{-5} \cdot p$, $p \sim B(n, 0.05)$
- coarsening 4: y = y

coarsening	N	SIR	HCR	ECR
1	10	0.96	1	1
1	100	1	1	1
1	1000	1	1	1
2	10	0.43	1	0.99
2	100	0.59	0.99	0.99
2	1000	0.80	1	1
3	10	0		1
3	100	0	0.92	0.95
3	1000	0	0.7?	
4	10	0.22	1	1
4	100	0.54		1
4	1000	0.82	1	1

	1			
coarsening	N	SIR	HCR	ECR
1	10	7.18	102.33	55.40
1	100	6.22	14.31	13.07
1	1000	6.14		8.08
2	10	5.33	25.81	22.90
2	100	5.60	8.79	8.67
2	1000	5.62	6.57	6.51
3	10	7 ·10 ⁻¹¹		3.37
3	100	$6.29 \cdot 10^{-11}$	0.19	0.19
3	1000	$6.39 \cdot 10^{-11}$	0.02	0.02
4	10	9.90	15848.89	10485.69
4	100	1.22		87.30
4	1000	0.31	1.48	1.57

One "real-world-example":

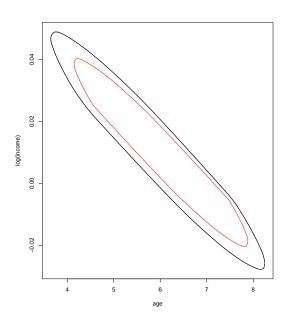
One "real-world-example": Allbus data:

One "real-world-example": Allbus data:

• sample from East Germany (n = 1077)

One "real-world-example": Allbus data:

- sample from East Germany (n = 1077)
- age (x, precise) and logarithm of income (y, interval-valued)



- Beresteanu, A., Molinari, F. (2008) Asymptotic Properties for a Class of Partially Identified Models, Econometrica, vol. 76, issue 4, pages 763-814.
- Cerny, M., Rada M. (2011). On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data. Measurement Science Review, vol. 11 No. 2.
- Schön, S., Kutterer, H. (2004). Using Zonotopes for Oversetimation-Free Interval Least-Squares Some Geodetic Applications. Reliable Computing, vol. 11, pages 137-155.
- Terwey, M., Baltzer, S. (2009). ALLBUS Datenhandbuch 2008. GESIS.