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simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}

I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}
I Least Squares: fLS = argminf

∑
i r

2
f ,i = argminf meani r

2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i = argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}
I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}
I Least Squares: fLS = argminf

∑
i r

2
f ,i = argminf meani r

2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i = argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}
I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}

I Least Squares: fLS = argminf
∑

i r
2
f ,i = argminf meani r

2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i = argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}
I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}
I Least Squares: fLS = argminf

∑
i r

2
f ,i

= argminf meani r
2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i = argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}
I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}
I Least Squares: fLS = argminf

∑
i r

2
f ,i = argminf meani r

2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i = argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}
I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}
I Least Squares: fLS = argminf

∑
i r

2
f ,i = argminf meani r

2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i

= argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



simple linear regression

breakdown point:
ε∗LS = 0

ε∗LMS = 1
n

⌊
n−1
2

⌋ n→∞−→ 1
2

I precise data: (xi , yi ) ∈ R2 for each i ∈ {1, . . . , n}
I linear regression: F = {fa,b : a, b ∈ R} with fa,b : x 7→ a+ b x

I (absolute) residuals: rf ,i = |yi − f (xi )| for each f ∈ F , i ∈ {1, . . . , n}
I Least Squares: fLS = argminf

∑
i r

2
f ,i = argminf meani r

2
f ,i

I Least Median of Squares: fLMS = argminf medi r
2
f ,i = argminf medi rf ,i

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



imprecisely observed data

imprecise residuals:

r f ,i = min
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

r f ,i = sup
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

for each f ∈ F , i ∈ {1, . . . , n}

I imprecise data: (x i , x i , y i
, y i ) ∈ R4

for each i ∈ {1, . . . , n}

I nonparametric statistical model: P is the set of all probability measures P
such that X i ,Xi ,X i ,Y i ,Yi ,Y i have a joint distribution satisfying

X i ≤ Xi ≤ X i and Y i ≤ Yi ≤ Y i P-a.s.

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



imprecisely observed data

imprecise residuals:

r f ,i = min
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

r f ,i = sup
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

for each f ∈ F , i ∈ {1, . . . , n}

I imprecise data: (x i , x i , y i
, y i ) ∈ R4

for each i ∈ {1, . . . , n}

I nonparametric statistical model: P is the set of all probability measures P
such that X i ,Xi ,X i ,Y i ,Yi ,Y i have a joint distribution satisfying

X i ≤ Xi ≤ X i and Y i ≤ Yi ≤ Y i P-a.s.

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



imprecisely observed data

imprecise residuals:

r f ,i = min
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

r f ,i = sup
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

for each f ∈ F , i ∈ {1, . . . , n}

I imprecise data: (x i , x i , y i
, y i ) ∈ R4

for each i ∈ {1, . . . , n}

I nonparametric statistical model: P is the set of all probability measures P
such that X i ,Xi ,X i ,Y i ,Yi ,Y i have a joint distribution satisfying

X i ≤ Xi ≤ X i and Y i ≤ Yi ≤ Y i P-a.s.

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



imprecisely observed data

imprecise residuals:

r f ,i = min
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

r f ,i = sup
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

for each f ∈ F , i ∈ {1, . . . , n}

I imprecise data: (x i , x i , y i
, y i ) ∈ R4

for each i ∈ {1, . . . , n}

I nonparametric statistical model: P is the set of all probability measures P
such that X i ,Xi ,X i ,Y i ,Yi ,Y i have a joint distribution satisfying

X i ≤ Xi ≤ X i and Y i ≤ Yi ≤ Y i P-a.s.

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



imprecisely observed data

imprecise residuals:

r f ,i = min
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

r f ,i = sup
(x,y)∈[x i ,x i ]×[y

i
,y i ]

|y − f (x)|

for each f ∈ F , i ∈ {1, . . . , n}

I imprecise data: (x i , x i , y i
, y i ) ∈ R4

for each i ∈ {1, . . . , n}

I nonparametric statistical model: P is the set of all probability measures P
such that X i ,Xi ,X i ,Y i ,Yi ,Y i have a joint distribution satisfying

X i ≤ Xi ≤ X i and Y i ≤ Yi ≤ Y i P-a.s.

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)
I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all

undominated regression lines

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)
I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all

undominated regression lines

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)
I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all

undominated regression lines

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)
I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all

undominated regression lines

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)
I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all

undominated regression lines

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)

I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all
undominated regression lines

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



Likelihood-based Imprecise Regression
I imprecise probability models naturally appear with imprecise data:

for example, the empirical joint distribution P̂X ,X ,Y ,Y of the imprecise data
corresponds to an imprecise joint distribution for the precise data:
P̂X ,Y is a belief function with focal sets [x i , x i ]× [y

i
, y i ]

I likelihood function: lik : P 7→
∏n

i=1

P(X i = x i , X i = x i , Y i = y
i
, Y i = y i )

P̂X ,X ,Y ,Y (x i , x i , y i
, y i )

I likelihood-based learning of imprecise probability model:
P>β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0, 1)

I if β ≥ 2−n, then for each f ∈ F , the imprecise value (under the model P>β)
of the median of the distribution of the (precise) residuals
Rf ,i = |Yi − f (Xi )| is the interval

Cf = [r f ,(n−k+1), r f ,(k)],

where n
√
β 7→ k

n is a decreasing bijection [ 12 , 1) → ( 12 , 1]

I Likelihood-based Region Minimax: fLRM = argminf sup Cf = argminf r f ,(k)
I interval dominance: U = {f ∈ F : r f ,(n−k+1) ≤ r fLRM ,(k)} is the set of all

undominated regression lines
Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



algorithm for fLRM

n = 17

β = 0.8
⇒ k = 10

if less that k intervals [y
i
, y i ] are

bounded, then r f ,(k) = +∞ for
each f ∈ F
otherwise, consider the strip
fLRM ± r fLRM ,(k):

I fLRM ± r fLRM ,(k) is the thinnest strip of the form f ± q containing (at least) k

imprecise data [x i , x i ]× [y
i
, y i ], for all f ∈ F , q ∈ [0,+∞)

I if the slope bLRM ̸= 0, then the imprecise data contained in fLRM ± r fLRM ,(k)

are bounded and (at least) 3 of them touch the boundary of the strip

I therefore, bLRM is either 0 or it is determined by a couple of bounded
imprecise data, which gives us at most 4

(
n
2

)
+ 1 possible values for bLRM
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fLRM ± r fLRM ,(k):

I fLRM ± r fLRM ,(k) is the thinnest strip of the form f ± q containing (at least) k

imprecise data [x i , x i ]× [y
i
, y i ], for all f ∈ F , q ∈ [0,+∞)

I if the slope bLRM ̸= 0, then the imprecise data contained in fLRM ± r fLRM ,(k)

are bounded and (at least) 3 of them touch the boundary of the strip

I therefore, bLRM is either 0 or it is determined by a couple of bounded
imprecise data, which gives us at most 4

(
n
2

)
+ 1 possible values for bLRM
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undominated regression lines

I set of undominated parameters:
{
(a, b) ∈ R2 : fa,b ∈ U

}
=

=
⋃k

i=1

{
(a, b) ∈ R2 : db,(i+n−k) − r fLRM ,(k) ≤ a ≤ db,(i) + r fLRM ,(k)

}
,

where db,i = infx∈[x i ,x i ](y i
− b x) and db,i = supx∈[x i ,x i ](y i − b x)

I example: CfLRM = [0, 0.354], CfLMS
= [0.002, 0.442], CfLS = [0.909, 1.502]
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statistical properties of LIR

I breakdown point: ε∗LIR = 1− k
n

n→∞−→ 1
2

I coverage probability of U : Yi = a0 + b0 Xi + εi with Xi , εi
i.i.d.∼ F0

β n P(medRf ,i ∈ Cf ) F0 P(fa0,b0 ∈ U)
0.5 20 0.737 Normal 0.83

Cauchy 0.97
1000 0.758 Normal 1.00

Cauchy 1.00
0.75 20 0.497 Normal 0.39

Cauchy 0.72
1000 0.533 Normal 0.91

Cauchy 1.00
0.999 20 0.176 Normal 0.03

Cauchy 0.11
1000 0.025 Normal 0.00

Cauchy 0.01
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