Bernhard Haller

Institut für Medizinische Statistik und Epidemiologie

24.11.2011

Outline

- Event time analysis
 - Basic concepts
 - Relevant measures
- 2 An introduction to competing risks
 - Basic concepts
 - Relevant measures
 - k-sample tests
- Ompeting risks regression
 - Regression approaches
 - Data application
- 🕘 Outlook
 - Simulation
 - Research questions

Outline

Event time analysis

- Basic concepts
- Relevant measures

An introduction to competing risks

- Basic concepts
- Relevant measures
- k-sample tests
- 3 Competing risks regression
 - Regression approaches
 - Data application
- 4 Outlook
 - Simulation
 - Research questions

Event time analysis

Basic concepts

Introduction

- Primary interest: Time to event
- Problem: Event of interest not observed for all individuals
 → censored observations (end of study, loss to follow-up)
- Special methods for the analysis of event time data
- Observed: Pair (T_i^*, d_i) with
 - T_i^{*} = min(T_i, C_i)
 d_i = I(T_i < C_i)
- T_i = event time
- C_i = censoring time
- $T_i^* = \text{observed time}$
- d_i = status (0 = censored, 1 = event)

Event time analysis

Relevant measures

Relevant measures

- Density function: f(t)
- Survivor function: $S(t) = P(T > t) = \int_{t}^{\infty} f(s) ds$

• Hazard function:
$$\lambda(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

•
$$S(t) = exp\Big(-\int_{0}^{t}\lambda(s)ds\Big) = exp\Big(-\Lambda(t)\Big)$$

Event time analysis

Relevant measures

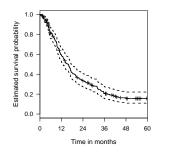
Event-time analysis

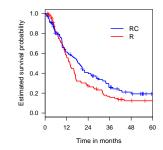
• Kaplan-Meier estimator:

$$\hat{S}(t) = \prod_{i:t_i \leq t} (1 - \frac{d_i}{n_i})$$

• Cox regression:

$$\lambda(t) = \lambda_0(t) \exp(X^\top \beta)$$





Outline

Event time analysis

- Basic concepts
- Relevant measures

2 An introduction to competing risks

- Basic concepts
- Relevant measures
- k-sample tests
- 3 Competing risks regression
 - Regression approaches
 - Data application
- 4 Outlook
 - Simulation
 - Research questions

An introduction to competing risks

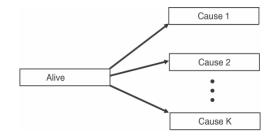
Basic concepts

Competing Risks

- Two or more mutually exclusive types of event
- Not all standard methods for event-time analysis are appropriate
- Different approaches for analysis of competing risks data proposed
- Observed:

•
$$T_i^* = min\{T_1, T_2, ..., T_K, C\}$$

• d_i : Indicator for type of event $(d_i \in \{1, ..., K\})$ or censoring $(d_i = 0)$



An introduction to competing risks

Basic concepts

"A nonidentifiability aspect of the problem of competing risks"

Tsiatis (1975):

- Problem: Only time to first event can be observed
- Correlation structure between times to different events cannot be assessed
- For each set of marginal distributions joint distributions with different correlation structures can be found
- Only under the assumption of independence marginal distributions do uniquely define the joint distribution
- Assumption of independence cannot be tested from observed data

An introduction to competing risks

Basic concepts

Motivation

Koller et al. (*Statistics in Medicine*, 2011): **Competing risks and the clinical community: irrelevance or ignorance?**

- Analysis of research articles from 2000 2010 from leading medical and biostatistical journals with a special focus on the last 50 publications relevant for competing risks analyses
- "Large developments in competing risks methodology have been achieved over the last decades, but we assume that recognition of competing risks in the clinical community is still marginal."
- Results:

Competing risks ...

- ... were often discussed in statistical journals.
- ... were present in many studies.
- ... were not considered or not analysed adequately in most of the studies investigated (n=50).

Conclusion:

"A better recognition of competing risks in the clinical community is needed."

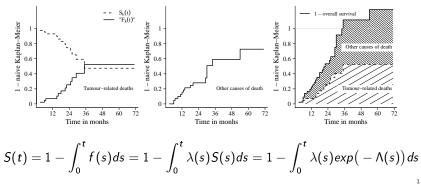
An introduction to competing risks

Basic concepts

Kaplan-Meier method in the presence of competing risks

- "Naïve" Kaplan-Meier estimator is applied to competing risks data
- Competing events are treated as censored observations
- A major assumption (independence between event and censoring times) of the Kaplan-Meier estimator is violated

Example: Patients with non-small cell lung cancer (NSCLC)



An introduction to competing risks

Relevant measures

Cause-specific hazard

• Cause-specific hazard rate:

$$\lambda_k(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t, D = k | T \ge t)}{\Delta t}$$

• Cumulative cause-specific hazard rate:

$$\Lambda_k(t) = \int_0^t \lambda_k(s) ds$$

Estimating λ_k:

$$\hat{\lambda}_k(t_i) = \frac{d_{ki}}{n_i}$$

 n_i : Number of subjects under risk (no event until t_i , still under observation) d_{ki} : Number of events of type k at time t_i

An introduction to competing risks

Relevant measures

Cumulative incidence function

• Cumulative incidence function:

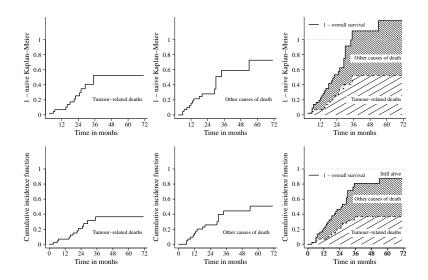
$$F_k(t) = P(T \le t, D = k) = \int_0^t \lambda_k(s)S(s-)ds$$

• "Naïve" Kaplan-Meier estimator vs. cumulative incidence function: $1 - S_k(t) = \int_0^t \lambda_k(s) exp(-\Lambda_k(s)) ds$ $\geq \int_0^t \lambda_k(s) exp(-\sum_{j=1}^K \Lambda_j(s)) ds = F_k(t)$

An introduction to competing risks

Relevant measures

"Naïve" Kaplan-Meier estimator vs. cumulative incidence function



An introduction to competing risks

Relevant measures

Relationship between $\lambda_k(t)$ and $F_k(t)$

• Cause-specific hazard:

$$\lambda_k(t) = \lim_{\Delta t o 0} rac{P(t \le T < t + \Delta t, D = k | T \ge t)}{\Delta t}$$

• Cumulative incidence function:

$$F_k(t) = \int_0^t \lambda_k(s) \exp\left(-\sum_{j=1}^K \Lambda_j(s)\right) ds$$

 $m{F}_k(t)$ depends on all $\lambda_j, j=\{1,...,K\}$

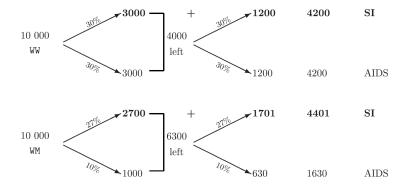
 \rightarrow no direct link between $\lambda_k(t)$ and $F_k(t)$

An introduction to competing risks

Relevant measures

Risk and incidence - an example

Illustration from Putter et al. (Statistics in Medicine, 2007):



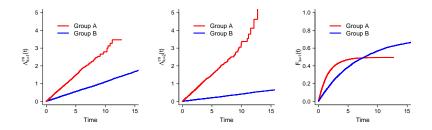
SI: Syncytium inducing HIV phenotype

An introduction to competing risks

Relevant measures

Risk and incidence - graphical illustration

Similar situation - simulated data:



An introduction to competing risks

Relevant measures

Subdistribution hazard

• Subdistribution hazard (Fine and Gray, 1999):

$$\lambda_k^*(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t, D = k | T \ge t \cup \{T < t, D \neq k\})}{\Delta t}$$

- Subjects failing from a competing event remain in the risk set
- Estimation of $\lambda_k^{*(1)}$

$$\hat{\lambda}_k^*(t_i) = \frac{d_{ik}}{n_i^*}$$

 n_i^* : Number of subjects at risk at time t_i (no event before t_i OR an event $\neq k$ before t_i)

 d_{ki} : Number of events of type k at time t_i

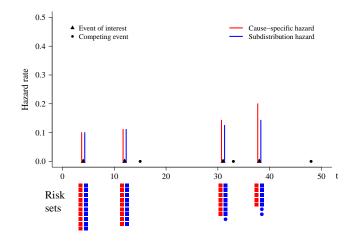
•
$$F_k(t) = 1 - exp\left(-\int_0^t \lambda_k^*(s)ds\right) = 1 - exp\left(-\Lambda_k^*(t)\right)$$

⁽¹⁾ For the case that no or just administrative censoring is present. In the case that individuals are lost to follow-up, a censoring distribution is estimated from the data.

An introduction to competing risks

Relevant measures

Illustration of different hazard rates

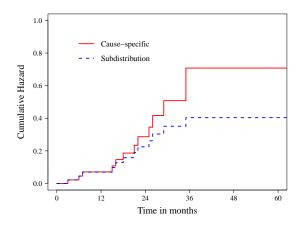


An introduction to competing risks

Relevant measures

Illustration of different hazard rates

NSCLC patients: Cause-specific and subdistribution hazard for tumour-related death

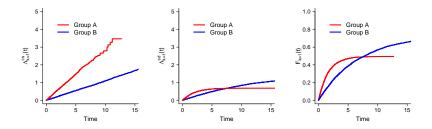


An introduction to competing risks

Relevant measures

Risk and incidence - graphical illustration

Situation described above - simulated data:



An introduction to competing risks

k-sample tests

k-sample tests

- Logrank test: Compares cause-specific hazard rates
- Gray's k-samples test: Compares subdistribution hazard rates
- Methods for comparison of cumulative incidence functions:
 - Pepe's Test (integrated weighted difference between two cumulative incidence functions)
 - Lin's Test (Kolmogorov-Smirnov-type test compares maximum difference between two cumulative incidence functions)

Outline

Event time analysis

- Basic concepts
- Relevant measures

2 An introduction to competing risks

- Basic concepts
- Relevant measures
- k-sample tests
- Ompeting risks regression
 - Regression approaches
 - Data application
- 4 Outlook
 - Simulation
 - Research questions

Competing risks regression

Regression approaches

Cause-specific hazard regression

Prentice et al. (1978):

- $\lambda_k(t)$ as dependent variable
- Prentice et al. proposed Cox-type regression

$$\lambda_k(t|\mathbf{X}) = \lambda_{k,0}(t) exp(\boldsymbol{\beta}_k^{\top} \mathbf{X})$$

- Competing events are treated as censored observations
- Assumptions and extension as known from classical Cox regression
- Can be performed using standard software

Competing risks regression

Regression approaches

Cause-specific hazard regression

- Cumulative incidences depend on covariate effects on all event types
- Two possible types of event:

$$F_1(t \mid X) = \int_0^t \lambda_1(s \mid X) exp\Big(-\big(\Lambda_1(s \mid X) + \Lambda_2(s \mid X)\big)\Big) ds$$

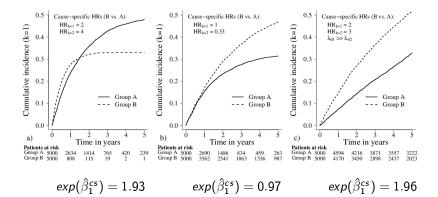
- "Naïve" calculation of event probabilities gives biased estimates
- No direct link between regression coefficients and cumulative incidence function

Regression approaches

Cause-specific hazard ratios and cumulative incidences

Incidences depend on the effects on all types of event

 \rightarrow Simulations (n=10000); HR: $\frac{Group B}{Group A}$



Regression approaches

Subdistribution hazard regression (Fine&Gray-Model)

Fine and Gray (1999):

• Cox-type regression on the subdistribution hazard proposed

$$\lambda_k^*(t|\mathbf{X}) = \lambda_{k,0}^*(t) exp(\boldsymbol{eta}_k^{* op} \mathbf{X})$$

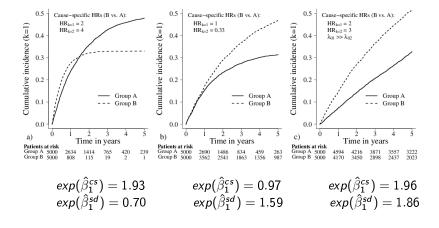
- Individuals failing from a competing event remain in the risk set
- Assumptions known from standard models are translated to subdistribution hazards (e.g. proportionality)
- Implemented in the R library cmprsk
- Direct link between regression coefficients and cumulative incidence:

$$F_k(t|\mathbf{X}) = 1 - exp\Big(-\int_0^t \lambda_{0k}^*(s)exp(\beta_k^{*\top}\mathbf{X})ds\Big) = 1 - exp\Big(-\Lambda_k^*(t|\mathbf{X})\Big)$$

Regression approaches

Cause-specific and subdistribution hazard ratios

SDH-models misspecified: Can be interpreted as summary analysis



Regression approaches

Mixture models

Larson and Dinse (1985):

- Joint distribution of event time and type of event as product of conditional and marginal distribution
- P(D,T) = P(T|D)P(D)
- Logistic regression model to estimate covariate effects on the probability of an event of interest
- Separate estimation of event time distributions for given event type
- Proposed conditional distributions for event times:
 - piecewise exponential distribution (Larson and Dinse, 1985)
 - generalized gamma distribution (Lau et al, 2008)
- Likelihood contribution of subject i:

 $L_{i} = [\pi_{i}f_{1}(t_{i})]^{I(d_{i}=1)} \times [(1-\pi_{i})f_{2}(t_{i})]^{I(d_{i}=2)} \times [\pi_{i}S_{1}(t_{i}) + (1-\pi_{i})S_{2}(t_{i})]^{I(d_{i}=0)}$

• Likelihood has to be maximized

Competing risks regression

Regression approaches

Mixture models

Alternative model for survival times:

- Semi-parametric estimation (Ng and McLachlan (2003), Escarela and Bowater (2008))
- No specification for survival time distribution for given type of event
- Hazard rates for given event type are assumed to be proportional
- Estimation via EM algorithm
- Standard errors via bootstrap samples
- Computationally very intensive

Regression approaches

Vertical Modelling

Nicolaie et al. (2009)

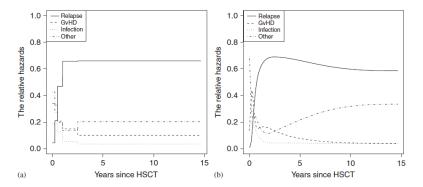
- Joint distribution of event time and type of event as product of conditional and marginal distribution
- P(D,T)=P(D|T)P(T)
- Marginal distribution for event times (e.g. parametric model)
- Conditional event probabilities for given event times
 → e.g. multinomial logistic regression including time as covariate
- Only individuals with an observed event can be used for estimation of "relative hazards"
- Regression coefficients hard to interpret
 - ightarrow graphical presentation

Regression approaches

Vertical Modelling

Nicolaie et al. (Statistics in Medicine, 2009)

- Data: 8966 leukaemia patients from the European Group for Blood and Marrow Transplantation
- Proportion of events in pre-specified time intervals or B-Splines to estimate "relative hazards" over time



Regression approaches

Event time analysis based on pseudo observations

Andersen, Klein et al. (2003, 2005)

- Calculate H pseudo-observations for each individual i
- Leave-one-out estimates $\hat{F}_{k}^{(i)}(\tau_{h})$ for the cumulative incidence function (Jackknife) at pre-specified time points $\boldsymbol{\tau} = (\tau_{1}, ..., \tau_{H})$

ightarrow calculation of pseudo-observations

$$\hat{\theta}_{ih} = n\hat{F}_k(\tau_h) - (n-1)\hat{F}_k^{(i)}(\tau_h)$$

- Notation:
 - au: vector of pre-specified time points
 - $\hat{F}_k(\tau_h)$: estimated cumulative incidence function for event k from all observations at time τ_h
 - $\hat{F}_{k}^{(i)}(\tau_{h})$: estimated cumulative incidence function for event k at time τ_{h} leaving out subject i
- If no censoring is present:
 - $n\hat{F}_k(\tau_h)$ = number of events of interest until time τ_h
 - $\hat{\theta}_{ih}$ is an indicator function $I(T_i \leq \tau_h, d_i = k)$.

Regression approaches

Event time analysis based on pseudo observations

• Estimation of covariate effects on the pseudo-observations using a GEE model with complementary log-log (clogclog) link

•
$$-\log(-\log(1- heta_{ih})) = lpha_h + eta^\top X_{ih}$$

- $exp(\beta)$ can be interpreted as subdistribution hazard ratio
- Simulation studies: large standard errors for regression coefficients
 - \rightarrow Recommendation (Pohar Perme and Andersen, 2008):
 - Do not use the method for proportional subdistribution hazard regression, since more efficient estimators are available
 - Pseudo observations can be useful for more complex models
 - Use pseudo observations to check model assumptions

Competing risks regression

Data application

Example

Bauer et al. (2009)

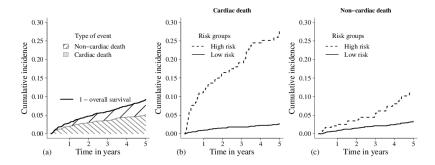
- Observation of 2341 patients after myocardial infarction
- Within 5 years 181 patients died
 - Cardiac deaths: n=104
 - Other types of death: n=77
- Aim: To establish a risk score for cardiac death
- Diabetes (yes/no) and age ($<\!65/\ge 65$) as further covariates
- Application of presented methods for competing risk regression

Data application

Cumulative incidence function

Incidences five years after myocardial infarction :

	Cardiac death		Non-cardiac death	
	Ê _{card .} (5 years)	95% ci	Ê _{non-card} (5 years)	95% ci
Overall	5.1%	4.2% to 6.1%	4.1%	3.1% to 5.0%
Low risk	2.7%	1.9% to 3.4%	3.3%	2.4% to 4.2%
High risk	27.5%	21.1% to 33.9%	10.9%	6.3% to 15.7%



Competing risks regression

Data application

Cause-specific hazard regression

library(survival) coxph(Surv(ev.time,ev.type==1)~group + diabetes + age,data=dat) coxph(Surv(ev.time,ev.type==2)~group + diabetes + age,data=dat)

Cardiac death							
	$\hat{\beta}$	$exp(\hat{eta})$	Std. error	p-value			
Risk group	2.36	10.53	0.20	<0.001			
Diabetes	0.72	2.06	0.21	0.001			
Age≥65	0.48	1.60	0.20	0.016			
Non-cardiac death							
	$\hat{\beta}$	$exp(\hat{\beta})$	Std. error	p-value			
Risk Group	1.06	2.89	0.26	< 0.001			
Diabetes	0.70	2.01	0.25	0.005			
Age>65	1.28	3.69	0.24	< 0.001			

Competing risks regression

Data application

Sudistribution hazard regression (Fine&Gray-Model)

library(cmprsk)

summary(crr(dat\$ev.time,dat\$ev.type,

cbind(dat\$group,dat\$diabetes,dat\$age),failcode=2,cencode=0))

Cardiac death							
	$\hat{\beta}$	$\exp(\hat{eta})$	Std. error	p-value			
Risk group	2.32	10.21	0.20	<0.001			
Diabetes	0.68	1.98	0.21	0.001			
Age≥65	0.47	1.60	0.20	0.017			
Non-cardiac death							
\hateta exp (\hateta) Std. error p-value							
Risk Group	0.84	2.31	0.28	0.002			
Diabetes	0.62	1.85	0.24	0.011			
Age \geq 65	1.28	3.58	0.25	< 0.001			

Competing risks regression

Data application

Mixture model

- $P(D,T|\mathbf{X}) = P(T|D,\mathbf{X})P(D|\mathbf{X})$
- Semi-parametric approach proposed by Ng and McLachlan (2003)
- No distribution assumption for survival times given type of event
- Hazard rates are assumed to be proportional
- Parameter estimation via EM algorithm
 - E-step: Determine expected failure type for censored observations given the observed data and current parameter estimates
 - M-step: Maximize the log-likelihood given the observed data and the expected failure types for censored observations
- Estimation of standard errors using 500 bootstrap samples

Competing risks regression

Data application

Mixture model results

- Higher probability of cardiac death for high risk patients
- Increased risk for both types of events for high risk patients

	Event types Cardiac		Event times			
			Cardiac		Non-cardiac	
	β	95% ci	β	95% ci	β	95% ci
Constant	-2.30	-3.92 to 1.65	_	_	_	_
Risk group	2.22	-1.44 to 3.97	0.88	-0.92 to 3.19	1.76	-0.21 to 2.76
Diabetes	-0.43	-2.00 to 1.82	1.17	-0.44 to 2.02	0.52	-0.49 to 2.07
Age \geq 65	0.96	-1.45 to 2.66	-0.25	-1.60 to 1.02	1.54	0.71 to 2.54

Competing risks regression

Data application

Vertical modelling

 $\mathsf{P}(\mathsf{D}{=}1|\mathsf{T}, \boldsymbol{\mathsf{X}}) \to \mathsf{Logistic} \text{ regression}$

- Smooth influence of time (B-Spline)
- Interaction between time and group

• Only patients with observed event considered

```
glm(ev.type==1~bs(ev.time,degree=3) * group + diabetes + age,
family=binomial(link="logit"),data=dd)
```

	\hat{eta}	Std. error	p-value
Constant	0.75	0.61	0.218
Risk group	1.27	0.91	0.165
Diabetes	-0.08	0.36	0.825
Age ≥ 65	-0.65	0.34	0.053
bs1(time)	-0.76	1.96	0.698
bs2(time)	-1.37	1.69	0.419
bs3(time)	-0.69	1.14	0.545
bs1(time)×risk group	1.08	3.25	0.740
bs2(time)×risk group	-0.64	2.56	0.802
bs3(time)×risk group	-0.46	1.82	0.800

bs: B-Spline components

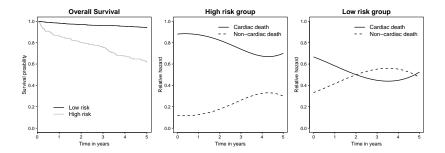
bs (time) × Risk group: Interaction terms

Competing risks regression

Data application

Vertical modelling - graphical presentation

- left: Survivor function adjusted for age and diabetes
- middle, right: Estimated relative hazards for events types given event time



Competing risks regression

Data application

Pseudo observations

- Estimation of cumulative incidence for all data
- Jackknife estimates (n-1 obs.) for cumulative incidence
- $au = \{0, 3, 6, 9, 12, 15, ..., 57, 60\}$ months

ightarrow 2341 imes 21 leave-one-out estimates $\hat{F}^{(i)}_{card}$

• Pseudo observations:

$$\hat{ heta}_{ih} = n \hat{F}_{ ext{card.}}(au_h) - (n-1) \hat{F}^{(i)}_{ ext{card.}}(au_h)$$

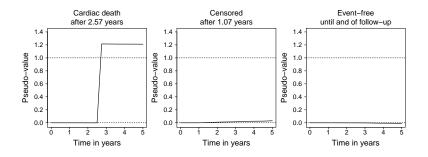
```
times <- seq(0,5,by=0.25)
CUM <- timepoints(cuminc(dat$ev.time,dat$ev.type),times)$est[1,]</pre>
```

```
CUM_i <- matrix(nrow=dim(dat),ncol=length(times))
for(i in 1:dim(dat)[1])
{
Cuminc <- timepoints(cuminc(dat$ev.time[-i],dat$ev.type[-i]),times)
CUM_i[i,] <- Cuminc$est[1,]
}</pre>
```

Competing risks regression

Data application

Examples for pseudo observations



Estimation of covariate effects:

- Pseudo observations as dependent variable
- GEE model with cloglog-link

Competing risks regression

Data application

Pseudo observations - results

	$\hat{\beta}$	$\exp(\hat{eta})$	Std. error	p-value
Constant	-6.81	0.00	0.35	<0.001
Risk group	2.36	10.59	0.22	<0.001
Diabetes	0.81	2.25	0.25	0.001
Age > 65	0.53	1.70	0.26	0.043
Time = 3 months	1.04	2.83	0.30	< 0.001
Time = 6 months	1.21	3.35	0.26	<0.001
				,
Time = 60 months	2.74	15.49	0 18	<0.001

- $\exp(2.36) = 10.59 \rightarrow can$ be interpreted as subdistribution HR
- Similar to Fine&Gray regression
 - F&G: $HR_{k=1}^{sd} = 10.21$
 - F&G: Smaller standard errors

Competing risks regression

Data application

Discussion of regression approaches

- Cause-specific and subdistribution hazard regression mainly used
 - Similar to standard analysis
 - Available in standard software
 - Different measures used as dependent variable
 - \rightarrow Different assumptions
 - $\rightarrow~$ Different interpretation
 - \rightarrow May give different results
 - ightarrow Be aware of relationships and limitations
- Mixture model and vertical modelling useful for data exploration
 - Many coefficients \rightarrow hard to interpret
 - No standard software available
 - Computationally intensive
- Model to be used for hypothesis testing?
 - Depending on research question
 - $\rightarrow\,$ Effects on risk: Cause-specific hazard regression
 - ightarrow Effects on incidence: Subdistribution hazard regression
 - Specify model for primary analysis a priori
 - Consider covariate effects on all event types (graphical presentation)

Outline

- Event time analysis
 - Basic concepts
 - Relevant measures
- An introduction to competing risks
 - Basic concepts
 - Relevant measures
 - k-sample tests
- 3 Competing risks regression
 - Regression approaches
 - Data application
- 🕘 Outlook
 - Simulation
 - Research questions

Outlook

Simulation

Simulation

- Simulation is based on cause-specific hazard rates
- Beyersmann et al. (*Statistics in Medicine*, 2009): Simulating competing risks data in survival analysis
- Cause-specific hazard rates "completely determine the competing risks process"
- Evaluation of methods using cause-specific hazards possible
- Methods using subdistribution hazard / cumulative incidence functions: ?

Outlook

Simulation

Simulation - cause-specific hazard (k=2)

- Choose baseline hazards $\lambda_{0;1}(t)$ and $\lambda_{0;2}(t)$ for both types of event
- 3 Specify cause-specific regression coefficients $oldsymbol{eta}_1$ and $oldsymbol{eta}_2$
- Generate the matrix of covariates X from a multivariate distribution
- Simulate event times based on individual overall hazards $\lambda_i(t \mid \mathbf{X}_i) = \lambda_{0;1}(t) exp(\mathbf{X}_i^\top \beta_1) + \lambda_{0;2}(t) exp(\mathbf{X}_i^\top \beta_2)$
- Determine the type of event for each individual by drawing a random number with probabilities

 $P(D_i = 1 \mid \mathbf{X}_i) = \lambda_{1,i}(T_i \mid \mathbf{X}_i) / (\lambda_{1,i}(T_i \mid \mathbf{X}_i) + \lambda_{2,i}(T_i \mid \mathbf{X}_i))$

 $P(D_i = 2 \mid \mathbf{X}_i) = \lambda_{2,i}(T_i \mid \mathbf{X}_i) / (\lambda_{1,i}(T_i \mid \mathbf{X}_i) + \lambda_{2,i}(T_i \mid \mathbf{X}_i))$

Generate independent censoring times

Outlook

Simulation

Simulation - subdistribution hazard

- Aim: To evaluate methods using the subdistribution hazard
- Problem: Simulation of event times for given β_1^*
- Possible solution: Use the relationship:

$$exp(\beta_{1}(t)) = \frac{1 + \frac{F_{2}(t|X=1)}{S(t|X=1)}}{1 + \frac{F_{2}(t|X=0)}{S(t|X=0)}} \times exp(\beta_{1}^{*}(t))$$

Outlook

Simulation

Proposal for k=2, binary covariate

- Choose covariate effects on the subdistribution hazard β_1^*
- Specify $\lambda_{0;1}(t)$, $\lambda_{0;2}(t)$ and $\beta_2(t)$
- Determine $\beta_1(t)$ for all t
- Generate event times following an algorithm for time-varying covariate effects
 - \rightarrow Binomial algorithm by Sylvestre and Abrahamowicz (2007)

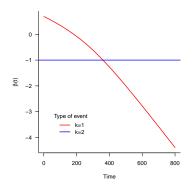
Outlook

Simulation

Example for data following a proportional sdh model

Aim: Generate event times for two groups with a $HR_{k=1}^{sd} = 2$.

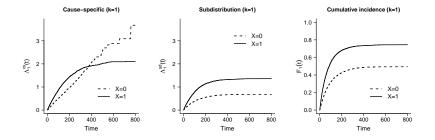
- Constant baseline hazards
- Constant $HR_{k=2}^{cs}$
- How to choose $\beta_{k=1}^{cs}(t)$?



Outlook

Simulation

Example for data following a proportional sdh model



• $HR_{k=1}^{cs}$ is time-dependent

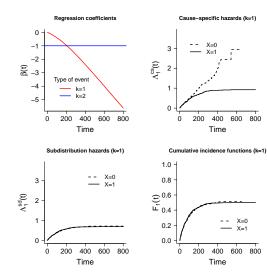
• $HR_{k=1}^{sd}$ is constant over time: $exp(\beta_{k=1}^{sd}) = 2$

Outlook

Simulation

Example II

Aim: $HR_{k=1}^{sd} = 0$



Outlook

Research questions

Research questions

- Choice of adequate measures for specific research questions
- When do cause-specific and subdistribution hazard regression give similar / different results?
- Identification of important covariates and high risk groups using different regression approaches
- Assessment of predictive accuracy and goodness of fit
- Small sample properties of proposed models
 → alternatives for small sample studies

Outlook

Research questions

References

- Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. *Proceedings of the National Academy of Sciences* **72**(1), 187-220.
- Koller, M. T., Raatz, H., Steyerberg, E. W. & Wolbers M. (2011). Competing risks in the clinical community: irrelevance or ignorance? *Statistics in Medicine* DOI: 10.1002/sim.4384.
- Putter, H., Fiocco, M. & Geskus, R. B. (2007). Tutorial in biostatistics: competing risks and multi-state models. *Statistics in Medicine* 26, 2389-2430.
- Beyersmann, J., Latouche, A., Buchholz, A. & Schumacher, M. (2009) Simulating competing risks data in survival analysis. *Statistics in Medicine* 28:956-971
- Sylvestre, M. & Abrahamowicz, M. (2008) Comparison of algorithms to generate event times conditional on time-dependent covariates. *Statistics in Medicine* 27:2618-2634
- Bauer, A., Barthel, P., Schneider, R., Ulm, K., Müller, A., Joeining, A., Stich, R.,Kiviniemi, A., Hnatkova, K., Kuikuri, H. et al. (2009) Improved Stratification of Autonomic Regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk) *European Heart Journal* 30:576-583.

References

References - regression approaches

- Prentice, R. L., Kalbfleisch, J. D., Peterson A., Flournoy, N., Farewell, V. & Breslow, N. (1978). The analysis of failure times in the presence of competing risks. *Biometrics* 34, 541-554.
- Fine, J. P. & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. JASA 94, 496–509.
- Larson, M. G. & Dinse, G. E. (1985). A mixture model for the regression analysis of competing risks data. *Journal of the Royal Statistical Society. Series C* (Applied Statistics) **34**, 201–211.
- Nicolaie, M. A., van Houwelingen, H. C. & Putter, H. (2010). Vertical modelling: A pattern mixture approach for competing risks modelling. *Statistics* in Medicine 29, 1190-1205.
- Klein, J. P. & Andersen, P. K. (2005). Regression Modelling of Competing Risks Based on Pseudovalues of the Cumulative Incidence Function *Biometrics* 61, 223-229.