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1. Background and Sketch of the Arguments

Applied Statistics: Learning from data by sophisticated models
Complex relationships between variables

dependent | fFoct ) independent
variable Y; chects variable X;
data > Inference -« data
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Often the relationship between variables and data is complex, too:

* Often variables of interest (gold standard) are not ascertainable.

* Only proxy variables (surrogates) are available instead.
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Typical examples: Measurement Error

e Error-prone measurements of true quantities

error in technical devices

indirect measurement

response effects

use of aggregated quantities, averaged values, imputation, rough
estimates etc.

anonymization of data by deliberate contamination

*x X X *

e Operationalization of complex constructs; latent variables

long term quantities: permanent income,
importance of a patent

extent of motivation, degree of costumer satisfaction
severeness of undernutrition

* X X *
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Cave Allegory

http://commons.wikimedia.org/wiki/File:Allegory_of_the_Cave_blank.png
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Notation

We have to distinguish between true (correctly measured) variable and its
(possible incorrect) measurement, i.e. between the gold standard and the
corresponding surrogate.

* - Notation (here)
X, Z : (unobservable) variable, gold standard

X*. Z*: corresponding possibly incorrect measurements analogously: Y,
Y*and T, T
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Zucker & Spiegelman

s misclassification (Stat. Med, 2008)

X classical covariate m.e.

classical m.e. in dependent var
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random
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‘ completely at random
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Partial ldentification and Beyond
Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

"The credibility of inference decreases with the strength of the as-
sumptions maintained.” (Manski (2003, p. 1))

Identifying Assumptions Very strong assumptions needed to ensure iden-
tifiability = precise solution

e Measurement error model completely known

- type of error, in particular assumptions on (conditional) independence
- type of error distribution
- moments of error distribution

e validation studies often not available
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Reliable Inference Instead of Overprecision!!

e Make more , realistic” assumptions and let the data speak for themselves!

e Consider the set of all models that are compatible with the data (and
then add successively additional assumptions, if desirable)

e The results may be imprecise, but are more reliable for sure

e The extent of imprecision is related to the data quality!

e As a welcome by-product: clarification of the implication of certain
assumptions

e parallel development (missing data; transfer to measurement error con-
text!)

* econometrics: partial identification: e.g., Manski (2003, Springer)
* biometrics: systematic sensitivity analysis: e.g., Vansteelandt, Goet-
ghebeur, Kenword, Molenberghs (2006, Stat. Sinica)

e current developments, e.g.,
* Cheng, Small (2006, JRSSB)
* Henmi, Copas, Eguchi (2007, Biometrics)
* Stoye (2009, Econometrica)
o Kleyer (2009, MSc., LMU); Kunz, Augustin, Kiichenhoff (2010, TR)
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Credal Estimation

e Natural idea: sets of traditional models — sets of traditional estimators

e Construct estimators © C RP, set-valued, typically interval-valued, point
estimators appropriately reflecting the ambiguity (non-stochastic uncer-
tainty, ignorance) in the credal set P.

e O small if, and only if (1), P "small”

* Usual point estimator as the border case of precise probabilistic infor-
mation
* Connection to Manski's (2003) identification regions and Vanstee-

landt, Goetghebeur, Kenward & Molenberghs (Stat Sinica, 2006)
1gnoTance regions.

e Construction of unbiased sets of estimating functions

e Credal consistency
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Credal Deficiency Models

Different types of deficiency can be expressed

e Measurement error problems

e Misclassification

o If YV*C P(Y) x{0,1} : coarsening, rounding, censoring, missing data

e Qutliers

Credal set: convex set of traditional probability distributions

Y]X, 9]
VX Y

(XX, Y

€ Pyixv
€ Py+xy

€ Pxxy

P := conv (Pyp(,rg ® Py« 1x,v ® PX*|X,Y)
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2. Measurement Error Correction
based on Precise Error Models

2.1. Measurement Error
Modelling
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“Measure what is measurable,
and make measurable what is not so."

(Galilei Galileo)
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Typical examples

e Error-prone measurements of true quantities

error in technical devices

indirect measurement

response effects

use of aggregated quantities, averaged values, imputation, rough
estimates etc.

anonymization of data by deliberate contamination

* % X *

e Operationalization of complex constructs; latent variables

long term quantities: permanent income,
iImportance of a patent

extent of motivation, degree of costumer satisfaction
severeness of undernutrition

*x X X *
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Notation again

We have to distinguish between true (correctly measured) variable and its
(possible incorrect) measurement, i.e. between the gold standard and the
corresponding surrogate.

* - Notation (here)
X, Z : (unobservable) variable, gold standard

X*. Z*: corresponding possibly incorrect measurements analogously: Y,
Y*and T, T
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Sources of measurement error

e Induced by an instrument (laboratory value, blood pressure)

e Induced by the study particants (medical doctors or patients; interviewers
and respondents)

e Surrogate variables, e.g. "Job exposure matrix: typical, instead of
individual, exposure”, "economic wealth of a district instead of individual
income”

e Measurement error induced by definition, e.g. "long term mean of daily
fat intake”, "average income”

e Operationalization of complex constructs ("quality of life", "consumer
satisfaction”)

Note:
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e 'Measurement error’ and 'misclassification’ are not just a matter of
sloppiness.

e Latent variables are eo ipso not exactly measurable.

e “Almost all economic variables are measured with error. [..]
Unfortunately, the statistical consequences of errors in explanatory
variables are severe.”

(Davidson and Mackinnon (1993),
Estimation and Inference in Econometrics.)

e In nonlinear models, the later statement may apply (!7) to the dependent
variable, too. (Dependence on the DGP: Torelli & Trivellato (1993, J.
Econometrics))
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The triple whammy effect of measurement error
Carroll, Ruppert, Stefanski, Crainiceanu (2006, Chap.H.)

— bias
— masking of features
— loss of power

e classical error: "attenuation ”

Results

7777777777777777777777

Figure 1: Effect of additive measurement error on linear regression
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Typical Examples: Berkson Error
e Experimental design: X target value, X truly absorbed value

o Aggregated data:

* aggregation for confidentiality, e.g., average income on " block level”
* X* mean exposure, X true individual exposure, JEM

e Omitted variable bias

e Remainder term of regression calibration
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Aggregated data

o Xi,..., X, iid. ~ (p,07)

1 .
X ==Y X, plimX=
° nz phm ]

5 Nn— 00
=1

o X, ~ (Y, 02)

= X, =X +6 withd~ (0;02 (1—%)) oLX

REFERENCES ARE MISSING!!
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Omitted variable ?77?

e Linear predictor with p = 2

ni = Bo + 51X + B4,  Z;LX;

e Omitting Z; means to work with
n" =B + BT X;

where
X =X, + @ZZ-.

&

e WHAT HAPPENS FOR p > 2, HOW IS Z; SHARED BETWEEN X1, X;57
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Fehlklassifikation

Y™ beobachtete, Y wahre Klassenzugehorigkeit

e V" =1 Test positiv, Y = 1 krank,

e Betrugsverdachtsfall, zu SchulungsmaBnahme angemeldet, geschatzte
Entwicklung des Auftragseingang

Y =1 YV =0
e | POC=1Y =1) P(Y* =1]Y = 0)
sensitivity @ false positive ®
ve_g| POT=0Y=1) P(Y =“O|.Y =0)
false negative ® specificity ©
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Fehlklassifikationsbias

p =p-sens+ (1 —p)-(1—spec)=p(sens+ spec — 1)+ (1 — spec)

p* =p sens + (1-p)(1-spec)
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Figure 1: Veranschaulichung Fehlklassifikationsbias: Abweichung von der Winkelhal-

bierenden
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Typical Examples: Rounding and Heaping

e duration data are commonly collected in a retrospective way

e strong memory effects when time spans have to be remembered, e.g.,
Skinner & Humphreys (1999, Lifetime Data Analysis)

e Holt et al (1991, Biemer et al(eds.)): age at menarche

e heaping in episode / spell-based designs: Torelli & Trivellato (1993, J.
Econometrics):
concentration of values of unemployment duration at multiples of six
(“identification problem”: heaping versus effect of different levels of
compensation)
strong dependence of the bias on the DGP
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Fig. L:Pcrgentage distribution of unemployed individuals aged 14-29 years by reported unemploy-
ment duration (in months) at initial survey, Italian LFS, matched data for Lombardy, 1986.1-1I:
males, N = 267 and females, N = 411.
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e heaping in calendar-based designs (German socio-economic panel SOEP)

* distorted values for entry and leave of state of unemployment

* bias analysis under simplified assumptions: Augustin & Wolff (2004,
Stat.Papers)

* simulation study (with data constellation based on the SOEP):
Wolff & Augustin (2003, ASTA); Jirgens (2007, JRSS A)
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FiGure 1. Proportion of the annual inflow into registered unemployment in each
calendar month — Women, West-Germany.
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Anonymisation Techniques

e Recent trend in official statistics: public use files (Statistisches Bun-
desamt, 2005, Statistik und Wissenschaft, Bd. 4) and big economic
research institutes (IAB, Nuremberg)

e Error mechanism known!
e Distortion by classical measurement error or misclassification

e Often other techniques, e.g. micro-aggregation (Schmid, SchneeweiB,
Kiichenhoff (2007) Stat. Neerl.; Schmid, (2007, Diss. LMU))

e Growing importance in biometrics

e Discussion on " privacy preserving data mining”
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2.2 Unbiased Estimating
Equations and

Corrected Score Functions

for Classical Measurement Error
(in the Cox Model)
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Corrected Score Functions (and the Cox Model under
Covariate Measurement Error)

e Frame the problem in terms of unbiased estimating functions (score
functions) for the parameter 9

s*(Y;X;9) such that Ey, (s*(Y;X;90)) =0

at the true parameter value 9

* (Huber: (1981, Wiley) M-estimators; Godambe (1991, Oxford UP);

Rieder (1994, Springer): Robust Asymptotic Statistics; Wansbeek &
Meijer (2000, Elsevier): GMM)

* Under regularity conditions still consistency and asymptotic normality.
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e For the moment classical covariate measurement error only
k
X, =X;+U;, X;LU.

e Note that typically, even if E(X*) =E(X)
then E(X*)") #E(X"), r>1.

e Therefore naive estimation by simply replacing X with X*, leads in

general to
Es, (s™(Y; X*90))| > a>0,

resulting in inconsistent estimators. For instance,

E(i(%ﬁoﬁr)(f)()é* )) #E<Zn:(yi5051'Xi)(£ ))ZO

1=1 =1

e Measurement error correction: Find an estimating function s* (Y, X*,9)
in the error prone data with

]EﬁOSX*(Y; X" 19) = 0.
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Corrected score functions

(Stefanski (1989, Comm. Stat. Theory Meth.), Nakamura (1990,
Biometrika))

e Use the ideal score function as a building block, SX*(Y, X* 1) such that
E(s™ (Y,X*,0)|X,Y) =s*(Y, X,9) ,
e Then (via iterated expectation!), indeed:
Es, (SX* (Y;X*;f}o)> = Ey, (Ey (SX* (Y; X5 9) | XY))

— Ey, <SX (Y;X;z‘}O)) ~0.

e Sometimes indirect proceeding: corrected log-likelihood 1¥ (Y, X,9)
with )
E(* (Y, X* 9)X,Y) =17 (Y, X,9).
Under regularity conditions corrected score function by taking the deriva-
tive.
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+ Functional method: no (unjustified !?7) assumptions on the distribution
of X

+ Successful for generalized linear models, polynomial regression, etc.
(Survey: SchneeweiB & Augustin, 2006, ASTA, Hubler & Frohn (eds.))

+ Extensions to misclassification (Akazawa, Kinukawa, Nakamura, 1998,
J. Jap. Stat. Soc.; Zucker, Spiegelman, 2008, Stat. Med.)

+ Quite general error distribution can often be handled (only existing
moment generating function needed)

— Numerical difficulties for small samples
— Handling of transformations (e.g. In X') complicated or impossible

— Non-existence of corrected score functions for some models

Thomas Augustin, LMU Research Seminar, 5 May 2010 38



Thomas Augustin, LMU Research Seminar, 5 May 2010 39



Tabelle 1: 3 = 1,v = 1.2, A\ = 1,size = 1000,
berechnet aus 100 Schitzern, Varianz des wahren
Pradiktors: 1.0, relative Median Fehler (in Pro-

zent)

Fehler- | Zensierung | rel. Median Fehler fiir (3

varianz | (in % ) | korrigiert | naiv
0.0 10 0.00 0.00
0.0 40 0.00 0.00
0.0 70 0.00 0.00
0.1 10 0.36 -13.20
0.1 40 1.59 -11.53
0.1 70 1.36 -10.38
0.3 10 0.43 -31.88
0.3 40 1.92 -29.61
0.3 70 1.46 -27.06
0.5 10 -0.76 -44.61
0.5 40 4.75 -41.41
0.5 70 0.96 -38.57
0.7 10 -0.50 -52.42
0.7 40 1.68 -49.89
0.7 70 2.69 -46.89

Thomas Augustin, LMU
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Example: An Exact Correction for the Breslow Likelihood
(Augustin (2004, Scand. J.Stat.))

e Nakamura (1992, Biometrics): method not applicable to partial likeli-
hood, seemingly approximate estimator

e The Breslow loglikelihood (Breslow (1972, JRSS SerB; 1974, Biomet-
rics)), based on Ag(t) := A, 7j—1 <t < 75,

k

(LA A B)) = (s + B'X () = A7y — m5-1) Y exp (/X)) )

J=1 iER(Tj)

does not have singularities and

- exp(8'X}) )

(mAj +BX () = A1 = Ti-1) D My, (B)

1 iER(1))

J

is a corrected log-likelihood.
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Proof / construction principle:

e Start with the naive log-likelihood

e It is sufficient to find constants ¢, ¢y such that

k ! N *
* eXp(B Xz)
E E (ln)\j+cl'ﬁ/X(j)_>\j(7_j_7-j—1) E ) |X,Y:
j=1

C
iGR(Tj) 2

Z( In\j + B'X ;) — N\j(15 — Tj—l)ZeXp (8°X5) )

Jj=1 iER(Tj)

e For that purpose note that: E@PX X, Y) = pgX;
E (exp(8'X])|X,Y) = exp(8'X;) - My, (B)
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2.3. Extended Corrected Score

Functions —
A Unified View at

Measurement Error
and Censoring
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Extended Corrected Score Functions
(and Parametric Survival Models)

e Parametric survival models: exponential, log-normal, Weibull, Gamma,

log-logistic

e Superstructure: accelerated failure time models

InT;, =00+ 0x"-Xi+v-€e, >0,

o E(T;) = exp (Bo) - exp (Bx" - X;) - E (exp(¢ - €))

e Use quasi-likelihood approach with quasi-score function

s (f, X[

Thomas Augustin, LMU

n

2.

1=1

DE[T)X;8) {T,—E[LIX:8]}

=0

dp
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e Use the accelerated failure time model as a superstructure!

|l General form of the ‘ideal' quasi-score equation based on
E[T7X5 8,4, = ¢ (¥,7) -exp(r- (Bo+ Bx - Xi))

distribution covariates

|l General form of the corrected quasi-score equation

|l Measurement error correction in a concrete model through appropriate
choice of ¢, ()

{} Adopt for deficient dependent variables (measurement error/censoring)
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Handling Deficient Dependent Variables

e Censoring: Instead of 7; one observes

Tz’* = min(Ti, Cz) and Az = I{TZ < C@}

e Measurement error: (with V; L rest, E(V;) =m, V(V;) =v)
* additive (1T =T, +V;)
* multiplicative (T =T, - V;)

response effects, memory effects (e.g., Skinner & Humphreys (1999,
Lifetime Data Analysis))
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Unifying approach: W™ X (T*: X* ¢9) extended corrected score function:
E(U™ X (T X5, 9)|T, X) = 07T, X, 9),

where U1*(T; X;49) is an ideal unbiased estimating function.

It leads, again by the law of iterated expectation, to unbiased estimating
function.
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Theorem: Let y W € {X* X;}, and ¥'(T;,W,9) be an unbiased
estimating function of the very general form (including ML estimation in
exponential families or Weibull type models, corrected QL estimation)

q

W (T, W, ) = ZZCZ W;,9) - T,

1=1 [=0

Then, under multiplicative measurement error,

. T*al
wT (':[‘*)‘Rf7 19 Z ZCZ Wz,ﬁ (Val)
i=1 =0 ‘

is an extended corrected score function. Similar results hold for the additive
model, if o € N.

Corollary: |¢=1,a=1,E(V;) =1 = 1/9\ML,nawe — 1} for exponential

families under unbiased measurement error in the dependent variable.
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Censoring Instead of 7; one observes

T :==min (73, C;) and A :=1({T; < Ci})

(]

with C; as the censoring variable.

Solve censoring by inverse probability weighting (e.g.  Zhou (1992,
Biometrika), Graf et al. (1999, Stat. Med.), Augustin (2002, Habil.),
van der Laan & Robins, (2003, Springer), Hothorn et al (2006, Biostatis-
tics), Gerds & Schuhmacher (2006, Biom. J.))

Consider independent random censoring, W € {X, X*}, (C4,...,C,
iLi.d. with G(t) := P(C; > t|W;) = P(C; > t) > 0, Vit € R,.. Then
for "every” g(+)

(17, W, 9)

g
& T
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Theorem: Consider independent random censoring, W € {X, X*},
Cl, .. .,Cn I.i.d. with G(t) = P(CZ Z t‘Wz) = P(Cz 2 t) > O, \va c R_|_,
and an unbiased estimation function for ¥ of the form

q
(T, W, ) ZaOWz,ﬁ + ) (Wi, d) -T2 [C]
=1

Then

(T, W, 0) = (T, Wi, )

and

1=1 =1

mn d .
(T, W, 0) =) (ao(Wzﬂ?) + 2 a(Wi,v)- Géj-* Timz)

are extended corrected score functions.
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Proof: A, =0 <= T # T;,. Therefore:

)

G(T;)

)

G(T7)

and

AY .
G(T")

1

P(A; =1|\W;,T;)

- G(T3)

— g(T27W277-9> 3
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P(A; =1\W;,T;) = P(C; > T;|W;, T;) = G(T7)
Is it possible to allow dependence on W; indeed?

Note, W is observable.

e Estimate G(-) in a nonparametric way: Kaplan-Meier-estimator

e In the case of ¥**(-) condition [C] can be replaced by ¥*(T,W,d) =
Z?:l w:(TZH Wi, 19) '

e Utilize the generality of the censoring lemmal
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Direct extensions:
Utilize the generality of the censoring lemma

e Use soft weighting by truncating large pseudo-observation (Hothorn et
al. (2006, Biostat.))

e Consistency under nonparametric estimation of G(-) (with Kukush, Usolt-
seva ):

e Extend sophisticated methods to handle measurement error in the linear
model (Cheng & van Ness (1999, Arnold); Wansbeek & Meijer (2000,
Elseiver)) and the polynomial model (Cheng & Schneeweiss (1998, JRSS,

Ser.B, 2002, TLS)), (Wansbeek & Meijer (2000, Elsevier, Chap. 11)) to
the nonparametric AFT

ID(TZ) = B,Xz + €; with €; unspecified.
e M-estimators under censorship

e handling of censored independent variables!?
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e but be careful with standard application of weighting procedures: com-
pare Basu's elephant in nonparametric statistics (Einbeck & Augustin,

(2009, Statistica Sinica))

Thomas Augustin, LMU Research Seminar, 5 May 2010 54



2.4. Corrected Score Functions

for Berkson Models
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e Up to now, the method of corrected score functions has not been applied
to the Berkson model.

e Recall: Corrrected score function: SX*(Y,X*,f}) such that

E(s* (Y,X*, 9)|X,Y) =s*(Y, X, )

e Only in the classical error model
(X7 | X5 Vi)
is directly available
e |dea: In the Berkson model
(X7 1X, Yl

can be obtained under additional assumptions, e.g., on the marginal
distribution of X .
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Let, for the moment, for: =1,... n,
o X'~ N (,u*,a*Q) s w.l.og. u*=0
® 57, ~ N (0,0'57;2)

Berkson model X; = X + 0;; X' 1o,

Then
~ ~9
X7|1X3, Y ~ N (f1567)
with
) o}
n = Xl 1 — 5
Ox
and 5 o
~9 0-51'O-X@*
0 =73
0%,
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Theorem: Corrected loglikelihood under Berkson error:

e Poisson regression:

(X,Y,B) = ) BX,Y;—exp(BX,)
1=1

gnaive(X*a Ya 6) — Z BX;(Yi — eXp(ﬁXz*)
1=1
n 2 2 2 2
* * . Ox * Ox * 05iOXi 2
Loore (XY™, ) = ; 5 BX]Yi — exp (J*Qﬁxi — B )
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e Cox model: Breslow log-likelihood, based on failure times 7;, j =
1,...,k,

* D(7;) deaths at 7;; d; := |D(7;)|, R(7;) risk set,
* )\, piecewise constant part of baseline hazard rate A\y(?)

(XY, B) = Zdj In\; + Z BX; — Nj(Tjp1 — 75) Z exp(5X;)
i=1 i€D(T;) i€R(T})
lraive(X7, Y, 8) = Y dilndj+ > BXS = N(mjp1—75) Y exp(BX])
i=1 i€D(T;) zeR(Tg)
k 2
Loore(X7Y,8) = ) | djlnd;+ —5 BX]-
J=1 i€D(75)
2 2 2
o » 59X
A (T]+1 ]) Z exXp <O'*);B T 92 62) ’
i€ER(T5)
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Construction

e Both models have a similar structure

* linear term: BX; and (BX; - Y;), resp.
* exponential term: exp(5.X;)

e For finding a corrected log likelihood
E(1X (Y, X", 9)|X,Y) = 1¥(Y, X, 9).
it is sufficient that there exist c1, co, c3, ¢4 such that
E( (X + )| X, Y;) = B,

and
E( (exp (e38X] + ea))| X, Y; ) = exp(BX,).
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e UNBIASEDNESS OF NAIVE SCORE TESTS 777
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