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Establishing an accurate and efficient numerical-probabilistic

algorithm based on Newton’s technique and Maximum Entropy

(ME) method.

PurposePurpose

Determining the important univariate and bivariate

distributions which are very effective in Medical Sciences,

Industrial and Engineering fields, Environment and Renewable

Energy System and in Computer Science especially in

Cybernetics and Internet systems.
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MethodologyMethodology

The design of all papers is to apply the new proposed

algorithm involving the combined use of the Newton methodalgorithm involving the combined use of the Newton method

and ME method, to find the unique solution of an

optimization problem which occurs when maximizing

Shannon’s Entropy.
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Maximum Entropy MethodMaximum Entropy Method
When approximating an unknown probability distribution, an important

question is, “what is the best approximation?” In recent years, maximum

entropy method has been used to obtain unknown distribution via solving

optimization problems. Jaynes (1957) has introduced a principle that the

best approximation of an unknown distribution subject to certain constraintsbest approximation of an unknown distribution subject to certain constraints

should have maximum entropy. This is known as the maximum-entropy

principle.

ME method is one of the most effective way of using limited available

information to make an appropriate probability distribution. This well-known

method is very useful in many situations in which statistical data

communicated with the random variable are either partially available or not

available at all. ME allows to obtain maximum possible information from given

measurement data of limited accuracy.
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Shannon’sShannon’s EntropyEntropy

Maximum Entropy Probability Distribution is a probability distribution
whose entropy is at least as great as that of all other members of a
specified class of distributions.
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Maximum Entropy MethodMaximum Entropy Method

ME Distribution
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Maximum Entropy MethodMaximum Entropy Method
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Maximum Entropy DistributionMaximum Entropy Distribution
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FindingsFindings

1. Univariate Maximum Entropy Distribution via a Computational Algorithm

(Accepted, 2013)

2. Two-Dimensional Maximum Entropy Distribution via Numerical Algorithm

(2014,Under Review)

3. Maximum Entropy Method and its Applications in Renewable Energy Systems

(2014-Under Review)

4. Shannon Entropy via Hybrid Numerical Algorithm for Solving an Inverse Problem

(2014-Under Review)

5. Maximum Entropy Method for Dynamic Contrast-Enhanced Magnetic Resonance

Imaging (2014-Under Review)

6. Bivariate Inverse problem & Maximum Entropy Method (2015)

7. Colocalization & Maximum Entropy Method (2015)
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MaximumMaximum EntropyEntropy MethodMethod forfor DynamicDynamic ContrastContrast--
EnhancedEnhanced MagneticMagnetic ResonanceResonance ImagingImaging

The purpose of the present study is:

To introduce the Maximum Entropy (ME) method as a powerful tool

for reconstructing images from many types of data.for reconstructing images from many types of data.

To investigate the relation between Maximum A posteriori Baysian

(MAP) method and ME method to estimate the Kinetic parameteres

of dynamic contrast-enhanced magnetic resonanceimaging (DCE-

MRI) and to determine an the prior probability distribution of CA

in Plasma.
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TracerTracer--Kinetic ModelKinetic Model

Kinetic models are always an approximation to the true

physiological processes in the tissue. This model assumes that the

contrast agent (CA) in this model abides and exchanges between

two sections: in the tissue and the vascular space.two sections: in the tissue and the vascular space.

When the kinetic behavior of the CA in the tissue of interest is

considered, we use this model in the form of differential equation

system:
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Kinetic ModelKinetic Model

14



ME ME & & MAP ApproachesMAP Approaches
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Maximum a Posterior EstimationMaximum a Posterior Estimation
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Mutual InformationMutual Information

Mutual information measures the information that X and Y share: it
measures how much knowing one of these variables reduces uncertainty
about the other. For example, if X and Y are independent, then
knowing X does not give any information about Y and vice versa, so their
mutual information is zero.
At the other extreme, if X is a deterministic function of Y and Y is aAt the other extreme, if X is a deterministic function of Y and Y is a
deterministic function of X then all information conveyed by X is shared
with Y: knowing X determines the value of Y and vice versa. As a result, in
this case the mutual information is the same as the uncertainty contained
in Y (or X) alone, namely the entropy of Y (orX). Moreover, this mutual
information is the same as the entropy of X and as the entropy of Y. (A very
special case of this is when X and Y are the same random variable.)
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ME ME & & MAP ApproachesMAP Approaches
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ME ME & & MAP ApproachesMAP Approaches
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Empirical ApplicationEmpirical Application

This dataset involves vectors of , and for . We have
established a MATLAB code for the new algorithm. The first step should
be to find the probability density of . Consider these constraints:

)( ip tC t )( itis tC 1,...,46=i

)(tCp
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Prior Model for CA in PlasmaPrior Model for CA in Plasma
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Modeling the CA in TissueModeling the CA in Tissue
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CA in TissueCA in Tissue
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Estimation of Kinetic ParametersEstimation of Kinetic Parameters
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Final model of CA in PlasmaFinal model of CA in Plasma
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