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Purpose

@ Establishing an accurate and efficient numerical-probabilistic
algorithm based on Newton's technique and Maximum Entropy
(ME) method.

@ Determining the important univariate and bivariate
distributions which are very effective in Medical Sciences,
Industrial and Engineering fields, Environment and Renewable

Energy System and in Computer Science especially in

—

Cybernetics and Internet systems.




Methodology

@ The design of all papers is to apply the new proposed
algorithm involving the combined use of the Newton method
and ME method, to find the unique solution of an
optimization problem which occurs when maximizing

Shannon's Entropy.

—




Maximum Entropy Method

en approximating an unknown probability distribution, an important
question is, "what is the best approximation?” In recent years, maximum
entropy method has been used to obtain unknown distribution via solving
optimization problems. Jaynes (1957) has introduced a principle that the
best approximation of an unknown distribution subject to certain constraints
should have maximum entropy. This is known as the maximum-entropy
principle.
@ ME method is one of the most effective way of using limited available
information o make an appropriate probability distribution. This well-known
method is very useful in many situations in which statistical data

communicated with the random variable are either partially available or not

available at all. ME allows to obtain maximum possible information frongaen
measurement data of limited accuracy. .




Shannon's Entropy

@ Maximum Entropy Probability Distribution is a probability distribution
whose entropy is at least as great as that of all other members of a
specified class of distributions.

The ME density 1s usually obtained by maximizing Shannon's entropy
(Shanonn, 1948):

h(f) = [/ Go)logf (x)dx.

Where density function f(x) should satisfy in the following
constraints:
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Maximum Entropy Method

@ ME Distribution

Consider the following problem: Maximize the entropy /(f) over all
probability densities f satisfying

I. f(x) =0, with equality outside the support set S
2. JoFf@)dx=1
3. f;f(x)r,-(x) dx =@ for 1.<i <m:

Thus, f is a density on support set S meeting certain moment con-
straints aq., s, ..., Uy
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Maximum Entropy Method

We tform the functional

1 == [ [ r+3 % [ 1n
i—1

and “differentiate” with respect to f(x), the xth component of f. to obtain

B e ]~ +il (x)
zi=r—=In Flx) = 0 iri(x).
af (x) =1
Setting this equal to zero, we obtain the form of the maximizing density
f(x) = ERD—1+E?I:]?‘LEFE(X), res.
where Ag, A1, ..., A, are chosen so that f satisfies the constraints.
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Maximum Entropy Distribution

Example (One-dimensional gas with a temperature constraint)
Let the constraints be EX =0 and EX? = o2. Then the form of the
maximizing distribution is

f(.:f) - El[;-!—lil—l—lgxz
To find the appropriate constants, we first recognize that this distribution

has the same form as a normal distribution. Hence, the density that satisfies
the constraints and also maximizes the entropy is the N(0, o%) distribution:

| _x
— ¢ 22
f(x) EJTUZE
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Findings

k)

Univariate Maximum Entropy Distribution via a Computational Algorithm
(Accepted, 2013)

2. Two-Dimensional Maximum Entropy Distribution via Numerical Algorithm
(2014 Under Review)

3. Maximum Entropy Method and its Applications in Renewable Energy Systems
(2014-Under Review)

4. Shannon Entropy via Hybrid Numerical Algorithm for Solving an Inverse Problem
(2014-Under Review)

5. Maximum Entropy Method for Dynamic Contrast-Enhanced Magnetic Resonance
Imaging (2014-Under Review)

6. Bivariate Inverse problem & Maximum Entropy Method (2015)

7. Colocalization & Maximum Entropy Method (2015) .




Maximum Entropy Method for Dynamic Contrast-
Enhanced Magnetic Resonance Imaging

The purpose of the present study is:

@ To infroduce the Maximum Entropy (ME) method as a powerful tool

for reconstructing images from many types of data.

@ To investigate the relation between Maximum A posteriori Baysian
(MAP) method and ME method to estimate the Kinetic parameteres
of dynamic contrast-enhanced magnetic resonanceimaging (DCE-
MRT) and to determine an the prior probability distribution of CA

—

in Plasma.




Compartmental model of
kinetics 1n the tissue. Tracer i1s delivered
via the vascular space, perfuses into the
extracellular extravascular space with rate
K™ perfuses back to vascular space with
rate ke, and 1s eventually washed out
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Tracer-Kinetic Model

@ Kinetic models are always an approximation to the true
physiological processes in the tissue. This model assumes that the
contrast agent (CA) in this model abides and exchanges between
two sections: in the tissue and the vascular space.

@ When the kinetic behavior of the CA in the tissue of interest is

considered, we use this model in the form of differential equation

system:

—



Kinetic Model

dpc, (t)

5 = Kipc, (1) K2pc. (1), (1)

where pc,(t) and pc, (t) are the concentrations of the contrast agent at
time t in the tissue of interest, that is, in the EES, and plasma, respec-
tively. K41 and K9 are the rate constants for the exchanges of contrast

agent between plasma and EES. Under pc, ;) = 0, Eqn.(1) can be solved
and leads to

t
i B = f pe, (£)e K2 dy, @)
]

A different approach on Eqn.(1) was presented by Murase (2004): We
reformulate (1) to

pe.(t) = K | oG55 i e 3)

This can be written in matrix form

C=AX B, (4J._




ME & MAP Approaches

t ty
A(R) = (/ pcp(u)du,/ pct(u)du) o= b2 00,
0 0
B = (K1,K2)",
and
Pci(t1)
Pci(t2)
PCt(tn)

when pc, () and pc,(t:) are known for ¢« = 1,2,...,n.. We can rewrite
Eq.(3) in this form:

pc.(t) = A(1)B +&i, €~ N(0,07). (5)

cEE
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Maximum a Posterior Estimation

IAssume that we want to estimate an unobserved population parameter fon the basis of
observations I.

0 — f(x|0)

1s known as the likelihood function and the estimate:

éML(x) = a,rg;nax f(x|0)

Now assume that a prior distribution Jover fexists. This allows us to treat flas a
random wvariable as in Bavesian statistics. Then the posterior distribution of Qlwg as
follows:

£(x16) 9(6)
Joo F(@l0) 9(9) v

8 f(B|z) =

where Jis density function of ), ®is the domain of §. This is a straightforward
application of Baves' theorem. The method of maximum a posterior estimation then
estimates as the mode of the posterior distribution of this random wvariable:

buuar(x) = argmax L ADIO _ _ oromax £(a10) 9(0).
o [ r@ e




Mutual Information

@ Mutual information measures the information that X and Y share: it
measures how much knowing one of these variables reduces uncertainty
about the other. For example, if X and Y are independent, then
knowing X does not give any information about ¥ and vice versa, so their
mutual information is zero.

@ At the other extreme, if X is a deterministic function of Y and Y is a
deterministic function of X then all information conveyed by X is shared
with Y. knowing X determines the value of ¥ and vice versa. As a result, in
this case the mutual information is the same as the uncertainty contained
in ¥ (or X) alone, namely the entropy of ¥ (orX). Moreover, this mutual
information is the same as the entropy of X and as the entropy of Y. (A very
special case of this is when X'and ¥ are the same random variable.)

I(X;¥)=H(X) —H(X|Y)

—




ME & MAP Approaches

ME density is usually obtained by maximizing Shannon’s entropy, (Thomas
and cover, 2006):

H(K) = —/p(k:)logp(k)dk. (5)
subject to E(di(k)) = | &i(k)p(k)de = pi,i=0,...,N

where ¢y, ..., 0, are N 4+ 1 known functions, and p;,7 = 0, ..., N are the
oiven expectation data. The solution of the ME problem is given by

plk) = e POARPITHC) res, (6)
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ME & MAP Approaches

Ai should be chosen such that p(k) satisfies the known moment con-
straints (Djafari, 2011). Now, if we determine pc, (t|k) and p(k), we can
solve the following system:

.

K = argmazz>o pc, (k|t) = argmaz.~o{pc, (t|k)p(k)}.

We use MEM to find a probability density pc, (t|k) in this way:

o =1t : -
[Ctts Aﬁ] E[Ctzs Aﬁ] , (8)

pc, (tlk) = exp[—T'(K)| with T'(K) =

a
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Empirical Application

® This dataset involves vectors of C (t) , tand C(t) fori =1,....46 . We have
established a MATLAB code for the new algorithm. The first step should
be to find the probability density of C,(t) Consider these constraints:

|, pc, (t)dt —1
|, tpe, (t)dt — 0.6963625369

and

{Normal@'zation oo(t) =1
O1(t) =1
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Prior Model for CA in Plasma

Then, the density which satisfied these constraints and maximize the
Shannon entropy is in the form of:

pe, (t) = ¢—0-10655061745—1.26042322763¢ | () =src

This is the primary model for data C,(?) changing the inverse problem to
forward. So, the mean of absolute error between exact data and estimated
model is 0.071. Since £ is strongly depends on dataset C),(f), so we can use
pc,(t) as prior information for estimating /', then we put it p(k).
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Modeling the CA in Tissue

Here, we use ME method again to determine pc,(t). Suppose that:

|, pc, (t)dt =l
[ tpe, (t)dt — 0.7136921
[ Log(t)pe, (t)dt = —0.78612099
and
Normalization ¢o(C,) =1
Oa (1) = Log(t)

The estimated probability distribution subject to these constraints is:

Lol

pCt(t) s _6—3.42—0.0714515—1.1759Log(t) X 0.5171.




= CA in Tissue

ME Estimation
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Estimation of Kinetic Parameters

I, = 0.965822
Iy = 1.146418

In this step, for solving inverse problem to find p¢, (f). we can put pe,(t),
K and K5 in Eq.(2), therefore we have final for of pc, (%):

ey = — ¢~ 3-2486—0.07145t—1.1759Log(t) | () 5308 1 6—1.1473—Log(t)?

and the mean of absolute error for the final pe (1) is 0.0515. Figure (1) shows
a good agreement between the exact data and ME estimated model:

Lol
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