Pre-validation for assessing the added predictive value of high-dimensional molecular data in binary classification

Eva Endres

Department of Statistics, Ludwig Maximilian's University Munich

June 26, 2014

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

Biological foundations

- Human genome is estimated to consist of about 20,500 genes
- Genes are sections of the DNA which in turn forms the 46 human chromosomes
- Genes control the production of amino acids/proteins
- Gene expression determines the phenotype
 - \rightarrow Structurally/functionally heterogeneous cells
- Measurement of gene expression with the aid of microarray technology
 - $\rightarrow\,$ Indication about presence or future development of diseases ($\hat{=}$ phenotype)

Statistical background

- Emphasis on binary classification, e.g. prognosis/diagnosis in cancer research
- Goal: Creation of a function that assigns a class to each new observation
- Logistic regression model: Estimation of the (conditional) probability

$$P(y_i = 1 | \mathbf{z}_i) = \frac{\exp(\gamma_0 + \gamma_1 \cdot z_{i1} + \gamma_2 \cdot z_{i2} + \ldots + \gamma_q \cdot z_{iq})}{1 + \exp(\gamma_0 + \gamma_1 \cdot z_{i1} + \gamma_2 \cdot z_{i2} + \ldots + \gamma_q \cdot z_{iq})}$$

- Linear predictor may include clinical and molecular information
 - $\rightarrow\,$ Combination of predictors with different dimensionalities
 - \rightarrow High-dimensionality of the molecular predictors

Statistical background

- High-dimensionality of the molecular predictors
 - Variable selection, dimension reduction, regularization techniques
 - Here: Least absolute shrinkage and selection operator and supervised principal component analysis
- Combination of clinical and molecular predictors:
 - Aggregation of the molecular predictors to one new component, the (linear) omics score

$$x_{score,i} = w_1 \cdot x_{i1} + w_2 \cdot x_{i2} + \ldots + w_p \cdot x_{ip}$$

Omics score is considered as new predictor

$$\eta_{i} = \underbrace{\gamma_{0} + \gamma_{1} \cdot z_{i1} + \gamma_{2} \cdot z_{i2} + \ldots + \gamma_{q} \cdot z_{iq}}_{\text{clinical model}} + \beta_{\text{score}} \cdot x_{\text{score},i}$$

⇒ Does the inclusion of the omics score in the prediction model improve its predictive ability?

Statistical background

- Question concerning the added predictive value of the omics score compared to well-established clinical predictors
- Validation of the added predictive value usually needs independent validation data
- What if there is no validation data available?
- Assessment of the added predictive value on the same data set that was used to derive the score
 - $\rightarrow~$ Omics score overfits the data at hand
 - $\rightarrow\,$ Strongly biased results in favor of the omics score i.e., the score might seem more important than it actually is
 - ⇒ Pre-validation:
 - Embedding score generation into a pre-validation loop ensures a fair comparison of the different predictors

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

Algorithm

- 1. Divide the present observations into *G* approximately equal-sized groups.
- 2. Set group *g* aside.

Use the gene expression levels of the remaining observations to obtain a rule f for generating the molecular score.

3. Apply this rule on the left-out observations of group g which yields the pre-validated molecular score.

$$\widetilde{\mathbf{x}}_{\textit{score}}^{[o(g)]} = \widehat{f}_{\mathbf{X}^{[-o(g)]}, \mathbf{y}^{[-o(g)]}}(\mathbf{X}^{[o(g)]})$$

4. Repeat steps 2-3 for each group $g = 1, \ldots, G$.

Least absolute shrinkage and selection operator

$$\hat{\boldsymbol{\beta}}_{\textit{Lasso}} = \argmin_{\boldsymbol{\beta}} \left\{ \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^\top \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) + \lambda \cdot ||\boldsymbol{\beta}||_1 \right\}$$

- Shrinks some coefficients, sets others to zero
- Good prediction accuracy and good interpretability of the regression results
- Handles the high-dimensionality of the molecular data
- Computational feasible
- Lasso-score:

$$x_{score,i} = \hat{\beta}_{Lasso,1} \cdot x_{i1} + \ldots + \hat{\beta}_{Lasso,p} \cdot x_{ip}$$

Least absolute shrinkage and selection operator

- 1. Divide the available observations into *G* approximately equal-sized groups.
- 2. Leave group g out and perform a Lasso-regression on the remaining observations to derive the vector $\hat{\beta}_{Lasso}^{[-o(g)]}$ including the regression coefficients of each molecular predictor.
- 3. Compute the pre-validated molecular score for person $i \in o(g)$ as weighted sum over all molecular predictors

$$\widetilde{x}_{\textit{score},i}^{[o(g)]} = \hat{\beta}_{\textit{Lasso},1}^{[-o(g)]} \cdot x_{i1}^{[o(g)]} + \ldots + \hat{\beta}_{\textit{Lasso},p}^{[-o(g)]} \cdot x_{ip}^{[o(g)]}$$

4. Repeat steps 2-3 for every group $g = 1, \ldots, G$.

Supervised principal component analysis

- Revelation of the latent structure of the data set ,i.e. groups of genes with similar expression profiles
- Uncorrelated linear combinations of the original predictors capture the largest proportion of variance
 - ightarrow Dimension reduction with slightly loss of information
- Principal components are not necessarily related to the outcome
- Supervised principal component analysis
 - Use only molecular predictors which are related to the outcome for the principal component analysis
 - Perform an univariate variable selection (here: Wald test) and use only the first k gene expressions of the toplist → X ∈ ℝ^{n×k}

Supervised principal component analysis

- 1. Divide the available observations into *G* approximately equal-sized groups.
- 2. Leave group g out and
 - 2.1 perform an univariate variable selection on the remaining observations to obtain a toplist of the molecular predictors;
 - 2.2 perform a principal component analysis on the basis of the first k = 25 predictors from the toplist;
 - 2.3 use the first *m* principal components as independent covariates in a multivariate logisitic regression model to estimate the vector $\hat{\beta}_{superPC}^{[-o(g)]} (\in \mathbb{R}^{m \times 1})$ of regression coefficients.
- 3. Compute the pre-validated molecular score for person $i \in o(g)$ as weighted sum over the first *m* principal components

$$\widetilde{x}_{score,i}^{[o(g)]} = \hat{\beta}_{superPC,1}^{[-o(g)]} \cdot \phi_{i1}^{[o(g)]} + \ldots + \hat{\beta}_{superPC,m}^{[-o(g)]} \cdot \phi_{im}^{[o(g)]}$$

4. Repeat steps 2-3 for every group $g = 1, \ldots, G$.

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

Testing in multivariate regression model

Multivariate logistic regression model

$$m{P}(y_i=1|\mathbf{z}_i,\mathbf{x}_i)=rac{\exp(\eta_i)}{1+\exp(\eta_i)}, ext{ where }$$

$$\eta_i = \gamma_0 + \gamma_1 z_{i1} + \gamma_2 z_{i2} + \ldots + \gamma_q z_{iq} + \beta_{score} x_{score,i}$$

- ightarrow Test the hypotheses $H_0: eta_{score} = 0$ vs. $H_1: eta_{score}
 eq 0$
- $\rightarrow~\textit{p}\text{-value} < \alpha~\Rightarrow$ Omics data provides added predictive value
- Comparison of the omics scores derived with and without pre-validation
 - → **Expectation**: $\beta_{score} > \tilde{\beta}_{score}$ and $p < \tilde{p}$ if the test is performed on the same data set that was used to build the score
- Disadvantage: p-value gives no indication about the predictive ability of a model

Evaluation of the prediction accuracy

- Discriminative ability determined via the area under the receiver operating characteristic curve
- Comparison of the prediction accuracy of the clinical and the combined prediction model
 - $\rightarrow AUC_{clinical} < AUC_{combined} \Rightarrow Omics data provides added predictive value$
- Comparison of the omics scores derived with and without pre-validation
 - \rightarrow **Expectation**: $AUC_{combined} > AUC_{combined}$ if the AUC is computed on the same data set that was used to build the score

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

Data simulation

• Simulation of
$$n = 200$$
 observations of $q = 10$ clinical and
 $p = 1000$ molecular predictors, where $(\mathbf{Z}, \mathbf{X}) \sim \text{MVN}(\mathbf{0}, \mathbf{R})$
• $\gamma = (-2, -1.5, -1, 1, 1.5, 2, 0, 0, 0, 0)^{\top}$ and
 $\beta = (\underbrace{0.75, \dots, 0.75}_{120}, \underbrace{0, \dots, 0}_{21,1000})^{\top}$
• Response is a Bernoulli random variable, where
 $\sum_{i=1}^{120} \exp(\gamma_0 + \gamma_1 \cdot z_{i1} + \dots + \gamma_q \cdot z_{iq} + \beta_1 \cdot z_{i1} + \dots + \beta_q \cdot z_{iq})$

$$\mathsf{P}(\mathsf{y}_i = 1 | \mathsf{x}_i, \mathsf{z}_i) = \frac{\exp(\beta + \beta + 2i_1 + \dots + \beta + 2i_q + \beta + 2i_q + \beta + 2i_q + \beta + 2i_1 + \dots + \beta + 2i_p)}{1 + \exp(\gamma_0 + \gamma_1 \cdot z_{i_1} + \dots + \gamma_q \cdot z_{i_q} + \beta_1 \cdot x_{i_1} + \dots + \beta_p \cdot x_{i_p})}$$

► Four settings:

	predic	ctive ability of	of clinical data
prodictive ability of		high	low
molocular data	high	setting 1	setting 3
molecular data	low	setting 2	setting 4
	no	setting 5	setting 6

Hatzis' breast cancer data

- Prospective multicenter study conducted from June 2000 to March 2010 at the M. D. Anderson Cancer Center in Houston, Texas
- 310 patients with newly diagnosed ERBB2 negative breast cancer treated with chemotherapy

 $y = \begin{cases} 0 & \text{chemosensitivity} & (\text{no or minimal residual disease}) \\ 1 & \text{chemoresistance} & (\text{moderate or extensive residual disease}) \end{cases}$

after neoadjuvant chemotherapy

- Clinical predictors: Age, progesterone receptor status, estrogen receptor status, tumor stage, nodal status and tumor grade
- 22,383 molecular predictors measured with the aid of gene expression microarrays from Affymetrix

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

Simulation setting 1

				Without	5-fold
				pre-validation	pre-validation
0			$\beta_{\textit{score}}$	2.2627	1.5183
ass			p _{score}	0.0001	0.0005
_			AUC	0.9407	0.9059
	ut		β_{score}	1.2262	0.6225
U	tho	ent	p _{score}	$1.73 \cdot 10^{-8}$	0.0007
er Pe	Ň	tme	AUC	0.9712	0.9113
ədn	_	snĺp	$\beta_{\textit{score}}$	1.6216	0.6703
Ś	vith	ac	p _{score}	$7.87 \cdot 10^{-7}$	0.0057
			AUC	0.9817	0.9041

Simulation setting 2

				Without	5-fold
				pre-validation	pre-validation
0			$\beta_{\textit{score}}$	5.2785	0.4013
ass			p _{score}	0.2489	0.4522
			AUC	0.9923	0.9915
	ut		β_{score}	1.6925	-0.0747
U	tho	ent	p _{score}	0.0246	0.4803
<u>er</u> P(Ň	tme	AUC	0.9958	0.9914
ədn	_	snĺp	β_{score}	3.1455	-0.1375
Ś	vith	ac	p _{score}	0.0102	0.4479
			AUC	0.9997	0.9914

Simulation setting 3

			Without	5-fold
			pre-validation	pre-validation
		$\beta_{\textit{score}}$	2.3631	1.4250
		p _{score}	$4.12 \cdot 10^{-5}$	0.0026
		AUC	0.9410	0.9018
rt –		β_{score}	1.2415	0.6232
tho	ent	p _{score}	$2.27 \cdot 10^{-8}$	0.0001
Ň	tme	AUC	0.9705	0.9084
_	jus	$\beta_{\textit{score}}$	1.688	0.7708
vith	ac	p _{score}	$1.43 \cdot 10^{-6}$	0.0042
		AUC	0.9809	0.9097
	with without	with without adjustment	$\begin{array}{c c} & \beta_{score} \\ p_{score} \\ AUC \\ \hline \\ \beta_{score} \\ p_{score} \\ AUC \\ \hline \\ \beta_{score} \\ AUC \\ \hline \\ \beta_{score} \\ p_{score} \\ P_{score} \\ AUC \\ \hline \\ AUC \\ \hline \end{array}$	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$

Simulation setting 4

				Without	5-fold
				pre-validation	pre-validation
0			β_{score}	7.9535	4.3370
ass			p _{score}	0.0023	0.0379
			AUC	0.9836	0.9782
	ut		β_{score}	1.0901	0.5738
U	tho	ent	p _{score}	0.0003	0.0108
îr Pe	Ň	tme	AUC	0.9929	0.9819
ədn	_	snĺp	$\beta_{\textit{score}}$	1.4043	0.3803
Ś	vith	ac	p _{score}	0.0004	0.1668
			AUC	0.9980	0.9765

Simulation setting 5

			Without	5-fold
			pre-validation	pre-validation
		$\beta_{\textit{score}}$	0.0069	-0.0013
		p _{score}	0.3545	0.4489
		AUC	0.9547	0.9541
ut		$\beta_{\textit{score}}$	1.0068	-0.0198
tho	ent	p _{score}	$4.23 \cdot 10^{-5}$	0.4648
Ň	tm	AUC	0.9795	0.9538
_	djus	$\beta_{\it score}$	3.7685	-0.0428
with	ac	p _{score}	$1.38 \cdot 10^{-4}$	0.4399
		AUC	0.9949	0.9539
	with without	with without adjustment	$\begin{array}{c c} & \beta_{score} \\ p_{score} \\ AUC \\ \hline \\ \beta_{score} \\ p_{score} \\ AUC \\ \hline \\ \beta_{score} \\ AUC \\ \hline \\ \beta_{score} \\ p_{score} \\ AUC \\ \hline \\ AUC \\ \hline \\ AUC \\ \hline \end{array}$	$\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$

Simulation setting 6

				Without	5-fold
				pre-validation	pre-validation
0			$\beta_{\textit{score}}$	-0.1055	-0.0158
ass			p _{score}	0.3240	0.4140
			AUC	0.9621	0.9606
	ut		β_{score}	1.0069	-0.0616
U	tho	ent	p _{score}	0.0004	0.4304
<u>er</u> P(Ň	tme	AUC	0.9825	0.9605
ədn	_	djus	β_{score}	4.2160	-0.1443
Ś	vith	ac	p _{score}	0.0002	0.3958
			AUC	0.9962	0.9608

Hatzis' breast cancer data

				Without	5-fold
				pre-validation	pre-validation
0			β_{score}	0.3572	0.0403
ass			p _{score}	0.0988	0.3482
			AUC	0.7803	0.7749
	ut		β_{score}	1.1229	0.4468
U	tho	ent	p _{score}	$2.43 \cdot 10^{-7}$	0.0120
er P(Ň	tme	AUC	0.8408	0.7858
ədn	_	djus	β_{score}	1.0223	0.0956
S	vith	ac	p _{score}	$4.68 \cdot 10^{-11}$	0.3487
			AUC	0.8887	0.7739

Background

Pre-validation

Assessment of the added predictive value

Practical application

Results

- Main tasks:
 - Investigation and comparison of the added predictive value of omics scores derived with and without pre-validation
 - $\rightarrow~$ Pre-validation generally seems to reduce overfitting
 - $\rightarrow~$ Strengthening of the clinical predictors cannot be confirmed
 - $\rightarrow\,$ None of the pre-validated scores shows significance if molecular data has no predictive ability
 - Simulation studies and analysis of real breast cancer data
 - Implementation of all applied methods in
- Perspective:
 - ightarrow Modifications of the simulation
 - \rightarrow Methods for binary classification
 - \rightarrow Methods for score generation
 - $\rightarrow\,$ Implementation of the permutation test for pre-validation

- Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival from gene expression data, *Public Library* of Science Biology **2**: 511–522.
- Boulesteix, A.-L. and Sauerbrei, W. (2011). Added predictive value of high-throughput molecular data to clinical data and its validation, *Briefings in Informatics* **12**: 215–229.
- De Bin, R., Herold, T. and Boulesteix, A.-L. (2014). Added predictive value of omics data: Specific issues related to validation illustrated by two case studies, *Technical Report 154*, Department of Statistics, University of Munich.
- De Bin, R., Sauerbrei, W. and Boulesteix, A.-L. (2014). Investingating the prediction ability of survival models based on both clinical and omics data: Two case studies, *Technical Report 153*, Department of Statistics, University of Munich.

- Hatzis, C. and et al. (2011). A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer, *The Journal of the American Medical Association* **305**: 1873–1881.
- Tibshirani, R. (1996). Regression shrinkage and selection vias the lasso, *Journal of the Royal Statistical Society, Series B* **58**: 267–288.
- Tibshirani, R. and Efron, B. (2002). Pre-validation and inference in microarrays, *Statistical Applications in Genetics and Molecular Biology* **1**: 1–18.