Coarse categorical data under epistemic and ontologic uncertainty Comparison and extensions of some approaches

Julia Plaß

17th of June 2013

- Introduction to the problem of coarse data
- 2 Approaches for dealing with epistemic uncertainty
- 3 Distribution on the power set as an approach for dealing with ontologic uncertainty
- A multinomial logit model based approach under the second kind of uncertainty
 - Accounting for epistemic uncertainty
 - Accounting for ontologic uncertainty

Conclusion

Introduction to the problem of coarsened data

Two kinds of uncertainty

- First kind of uncertainty: Sampling variability
- Second kind of uncertainty: Lack of information

Epistemic uncertainy

1

↓ Ontologic uncertainty

- Imprecise observation of something precise
- True underlying coarsening mechanism available
- Different types of coarsening
 - Rounding
 - Grouping
 - Heaping
 - Censoring
 - ...

- Imprecise observation of something precise
- True underlying coarsening mechanism available
- Different types of coarsening
 - Rounding e.g. needed time to go to university
 - Grouping
 - Heaping
 - Censoring
 - ...

- Imprecise observation of something precise
- True underlying coarsening mechanism available
- Different types of coarsening
 - Rounding
 - Grouping classes of wages per month for working students:
 - Heaping [0, 200), [200, 400), [400, 600), ...
 - Censoring
 - ...

- Imprecise observation of something precise
- True underlying coarsening mechanism available
- Different types of coarsening
 - Rounding
 e.g. Age heaping
 - \bullet Grouping G=0: true age truncated to the next lowest month,
 - Heaping G=1 to the next lowest half year,
 - Censoring G=2 to the next lowest year
 - ...

- Imprecise observation of something precise
- True underlying coarsening mechanism available
- Different types of coarsening
 - Rounding
 - Grouping
 - Heaping
 - Censoring e.g. failure time data
 - ...

Ontologic uncertainty

- Precise observation of something imprecise
- Coarse observations are true observations
 ⇒ No coarsening mechanism available
- Imprecision because of Indecision

e.g. some respondents are indecisive between electing party A and party B

 \Rightarrow category "A or B" (AB) represents the truth

Questions to be answered

• Are there some general approaches for dealing with...

- ... epistemic uncertainty?
- ... ontologic uncertainty?
- How can those types of uncertainty be involved within a regression model?
- How can those approaches be compared?

Here:

- Categorical data only
- Coarse dependent variable only

Approaches for dealing with epistemic uncertainty

Initial problem:

$$P(\mathcal{Y} = \mathfrak{r}) = \sum_{Y} \underbrace{P(\mathcal{Y} = \mathfrak{r}) | Y = y}_{q} \cdot P(Y = y)$$

Possible solutions:

- Assuming ignorability: Coarsening at random
- Set valued results by procedures that avoid making unjustified assumptions
 - Partial identification
 - Sensitivity analysis

Coarsening at random (CAR)

Likelihood according to Heitjan and Rubin (1991)

$$L(\theta, \gamma, \mathfrak{r}) = \int_{\mathfrak{r}} q(\mathfrak{r}|y, \gamma) f(y, \theta) dy$$

Types of coarsening:

nonstochastic:

$$q(\mathbf{y}|\mathbf{y},\gamma) = r(\mathbf{y}|\mathbf{y},\theta) = \begin{cases} 1, & \text{if } \mathbf{y} = \mathcal{Y}(\mathbf{y}) \\ 0, & \text{if } \mathbf{y} \neq \mathcal{Y}(\mathbf{y}) \end{cases}$$

stochastic:

$$q(\mathbf{y}|y,\gamma) = \int_{\Gamma} r(\mathbf{y}|y,g) h(g|y,\gamma) dg$$

Coarsening at random (CAR)

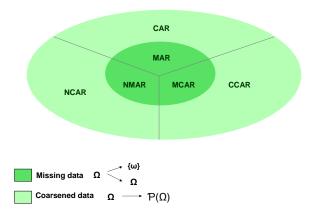
"Under which circumstances can stochastic nature of the coarsening be ignored?"

 \Rightarrow CAR + distinct parameters

"The data are CAR if, for the fixed observed value of y and for each value of γ , $q(y|y, \gamma)$ takes the same value for all $y \in y$, i.e., for all values of y that are consistent with y." – Heitjan and Rubin, 1991, p.2248 – Approaches for dealing with epistemic uncertainty

Relation to the missing data problem

Missing as a special case of coarsening



Partial identification

• Identification region in context of missing data according to Manksi (2003):

$$H[P(Y=y)] \equiv [P(Y=y|g=1) \cdot P(g=1) + \underbrace{P(Y=y|g=0)}_{\gamma} \cdot P(g=0), \gamma \in \Gamma_{Y}].$$

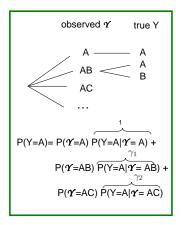
• Identification region in context of coarsened data:

$$H[P(Y = A)] \equiv \underbrace{P(Y = A | \mathcal{Y} = A)}_{1} P(\mathcal{Y} = A) + \underbrace{P(Y = A | \mathcal{Y} = AB)}_{\gamma_{1}} P(\mathcal{Y} = AB) + \underbrace{P(Y = A | \mathcal{Y} = AC)}_{\gamma_{2}} P(\mathcal{Y} = AC),$$

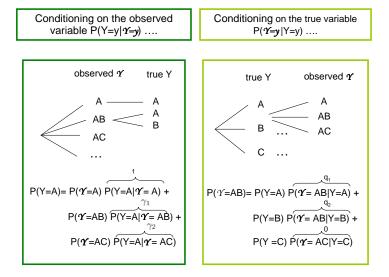
$$\forall \text{ possible } P(Y = A | \mathcal{Y} = y) = \gamma_{i}, i = 1, 2]$$

Partial identification: Different points of view

Conditioning on the observed variable P(Y=y|Y=y)



Partial identification: Different points of view



Partial identification: Different points of view

	Approach 1	Approach 2		
Starting	P(Y=y)=	$P(\mathcal{Y} = \mathfrak{y}) =$		
point	$=\sum_{Y} P(\mathcal{Y} = \mathfrak{Y} Y = y) P(Y = y)$	$\Big = \sum_{\mathcal{Y}} P(\mathcal{Y} = \mathfrak{Y} Y = y) P(\mathcal{Y} = \mathfrak{Y}) \Big $		
Assumptions	$P(Y = y \mathcal{Y} = \mathfrak{Y}) = \gamma$	$P(\mathcal{Y} = \mathfrak{P} Y = y) = q$		
on	(conditioning on observed variable	(conditioning on true variable)		
Empirical	- $\gamma \in [0,1]$	$\overline{q}_1 \leq \frac{P(\mathcal{Y}=AB)}{P(\mathcal{Y}=A)+P(\mathcal{Y}=AB)}$		
evidence		$\overline{q}_2 \le \frac{P(\mathcal{Y} = \widetilde{AB})}{P(\mathcal{Y} = B) + P(\mathcal{Y} = AB)}$		
		- No lower bound \underline{q}_1 and \underline{q}_2		
	- Make plausible	- CAR		
	set-valued assumptions			
Further	about γ			
assumptions	- Evaluate by	- Assumption about		
	contentual aspects	$R = \frac{q_2}{q_1}$		
	if $\gamma_1 > \gamma_2$			
	or vice versa			

Sensitivity analysis

Foundations:

- Ignorance region $ir(\theta, \Delta)$: whole collection of θ -values that result from different δ
- \bullet Sensitivity parameter $\delta :$ Parameter of interest is identified given the value of δ
- Selection model in context of missing data

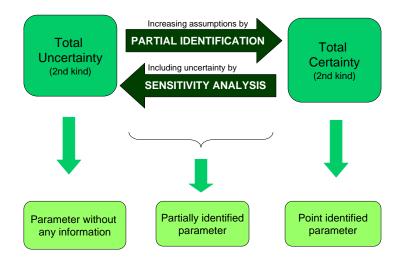
$$\pi_{g_1g_2,ij}=p_{ij}\cdot q_{g_1g_2|ij}.$$

Application in the framework of coarse data

- Selection model: $\pi_{AB,A} = p_A \cdot q_{AB|A}$
- Additional restriction: $q_{A|A} + q_{AB|A} + q_{AC|A} = 1$

$$\Rightarrow q_{AC|A} \leq 1 - q_{A|A} - q_{AB|A}$$

Comparison of partial identification and sensitivity analysis



Dealing with ontologic uncertainty

- Introduction of the distribution on the power set in order to deal with ontologic uncertainty (*-notation)
- Foundations adapted from
 - Random set theory: Finite random sets (basic idea)
 - Dempster-Shafer theory (interpretation of notions, prediction)

Finite random sets

Important notions:

• Definition of finite random sets:

A finite random set with values in $\mathcal{P}(\Omega)$ is a map $X : \Omega \to \mathcal{P}(\Omega)$ such that $X^{-1}(\{A\}) = \{\omega \in \Omega : X(\omega) = A\} \in \mathcal{A}$, for any $A \subseteq \Omega$.

• Definition of distribution on the power set and capacity functional (DST: belief, plausibility)

General analysis of coarse data under ontologic uncertainty

Coarse observations can be regarded as own outcomes \Rightarrow analysis on the power set $\mathcal{P}(\Omega) \setminus \emptyset = \Omega^*$

$$\mathcal{P}^{\star}:\mathcal{P}(\Omega^{\star})=\mathcal{P}(\mathcal{P}(\Omega)\setminus\emptyset) \hspace{0.1in}
ightarrow \hspace{0.1in} \mathbb{R}$$

Dempster-Shafer theory - Introduction

Example: Who has filled the role of Santa Claus this year? A, B or C? Query set Q = [B, C]

person no.	1	2	3	4	5	6
guess of person	[<i>A</i> , <i>B</i>]	[<i>A</i> , <i>C</i>]	Α	С	[A, B, C]	[B, C]

- Measure of belief: include all guesses g_i that are fully contained within the query set (i.e. g_i ⊆ Q)
 ⇒ Bel(Q) = ²/₆ = ¹/₃
- Measure of plausibility: involve all guesses g_i that intersect the query set Q (i.e. g_i ∩ Q ≠ Ø)
 ⇒ Pl(Q) = ⁵/₆

Dempster-Shafer theory - Important notions

- Basic probability assignement $m: \mathcal{P}(\Omega) \rightarrow [0,1]$
 - $m(\emptyset) = 0$ and $\sum_{A \subseteq \Omega} m(A) = 1$
 - confidence that can be exactly commited to A
- Belief function Bel : $\mathcal{P}(\Omega) \to [0,1]$

•
$$Bel(\Omega) = 1$$
, $Bel(\emptyset) = 0$

- ∞ -monotone, i.e. $Bel(\bigcup_{i=1}^{k} A_i) \ge \sum_{\emptyset \neq I \subseteq \{1,2,...,k\}} (-1)^{|I|+1} Bel(\bigcap_{i \in I} A_i)$
- calculation: $Bel(Q) = \sum_{A \subseteq Q} m(A)$
- Plausibility function $PI : \mathcal{P}(\Omega) \rightarrow [0, 1]$
 - $PI(\Omega) = 1$, $PI(\emptyset) = 0$
 - alternating of infinite order, i.e.

$$Pl(\cap_{j=1}^{k}) \leq \sum_{\emptyset \neq I \subseteq \{1,2,...,n\}} (-1)^{|I|+1} Pl(\cup_{i \in I} K_i)$$

• calculation: $PI(Q) = \sum_{A \cap Q \neq \emptyset} m(A)$

Belief and plausibility function as instruments for prediction

- Analysis based on distributions on the power set as generalization of classical probability theory
- Interpretation of PI and Bel as lower and upper bound respectively

Prediction under the presence of ontologic uncertainty:

 $\Pi^\star\colon \text{family of distributions on the power set, } F^\star:\Omega^\star\to[0,1]$

$$\underline{F}^{\star}(Q)^{\star} = \sum_{A^{\star} \subseteq Q^{\star}} m^{\star}(A^{\star}) = \inf\{F^{\star}(A^{\star}) | F^{\star} \in \Pi^{\star}\}$$
$$\overline{F^{\star}}(Q^{\star}) = \sum_{A^{\star} \cap Q^{\star} \neq \emptyset} m^{\star}(A^{\star}) = \sup\{F^{\star}(A) | F^{\star} \in \Pi^{\star}\}$$
$$\Rightarrow F^{\star}(Q^{\star}) = [\underline{F}^{\star}(Q^{\star}), \overline{F^{\star}}(Q^{\star})]$$

where the length of the interval indicates the extent of ontologic uncertainty

J.Plaß (Institute for statistics)

Coarse categorical data

17th of June 2013 20 / 33

Modelling approach with coarse data

- Goal: Involve 1.) epistemic and 2.) ontologic uncertainty within the dependent variable
- Precise multinomial logit model as a starting point:
 - $Y_i \in \{1,...,c\}$ is categorical and of nominal scale
 - The probability of occurrence for category r is determined by

$$P(Y_i = r | \mathbf{x}_i) = \pi_{ir} = \frac{\exp(\mathbf{x}_i^T \beta_r)}{1 + \sum_{s=1}^{c-1} \exp(\mathbf{x}_i^T \beta_s)}$$

• ... and for the reference category by

$$P(Y_i = c | \mathbf{x}_i) = \pi_{ic} = 1 - \pi_{i1} - \dots - \pi_{ic-1} = \frac{1}{1 + \sum_{s=1}^{c-1} \exp(\mathbf{x}_i^T \beta_s)}$$

• Solving for the linear predictor:

$$\log \frac{\pi_{ir}}{\pi_{ic}} = \mathbf{x}_i^T \boldsymbol{\beta}_r, \ r = 1, ..., c$$

J.Plaß (Institute for statistics)

Epistemic uncertainty - Data generating process

True categories: "A", "B", Observed categories: "A", "B", "A or B"

Data for *iid*-model

- *iid* assumption $\Rightarrow \pi_{iA} = \pi_A$ and $\pi_{iB} = \pi_B$
- Different combinations of $q_1 = P(Y_{coarse} = A \text{ or } B | Y = A)$ and $q_2 = P(Y_{coarse} = A \text{ or } B|Y = B) \Rightarrow Y_{coarse1, ..., Y_{coarse81}}$
- 100 datasets of that kind:

Y	Ycoarse1	Ycoarse2		Ycoarse81
В	A or B	В		В
A	A	А		A or B
В	В	В		A or B
•	•		•	
•		•	•	•
A	A	A	• • • •	A or B

Epistemic uncertainty - Data generating process

True categories: "A", "B", Observed categories: "A", "B", "A or B"

Data for model with covariates

- sampling probabilities π_{iA} and π_{iB} are dependent on underlying values of covariates $X_{i1} \sim Po(3)$ and $X_{i2} \sim \mathcal{N}(0,4)$
- same way of coarsening as in *iid*-model
- 100 datasets of that kind:

Y	X1	X2	Ycoarse1	Ycoarse2		Ycoarse81
A	7	0.2456983	A	A or B		A
A	1	1.7636975	А	А		A
A	5	0.8042766	А	А		A or B
В	2	0.5196141	В	В		В
:	:	:	:	:	:	:
•	•	•	•	•	•	•
В	3	-5.134471	В	A or B		A or B
A	1	-0.7402479	A	Α		A
A	2	2.448102	Α	А		A or B

Epistemic uncertainty - Models of interest

Model 1: iid model

$$L(q, \pi_{iA}) = \prod_{\mathcal{Y}_i} P(\mathcal{Y} = \mathbf{\hat{y}})$$

=
$$\prod_{i:\mathcal{Y}_i = A} \underbrace{P(\mathcal{Y} = A | Y = A)}_{(1-q_1)} \pi_A \prod_{i:\mathcal{Y}_i = B} \underbrace{P(\mathcal{Y} = B | Y = B)}_{(1-q_2)} (1 - \pi_A)$$
$$\prod_{i:\mathcal{Y}_i = AB} \underbrace{P(\mathcal{Y} = A \text{ or } B | Y = A)}_{q_1} \pi_A + \underbrace{P(\mathcal{Y} = A \text{ or } B | Y = B)}_{q_2} (1 - \pi_A).$$

 \Rightarrow estimators: $\hat{\pi}_A$, \hat{q}_1 , \hat{q}_2

Model 2: Including covariates

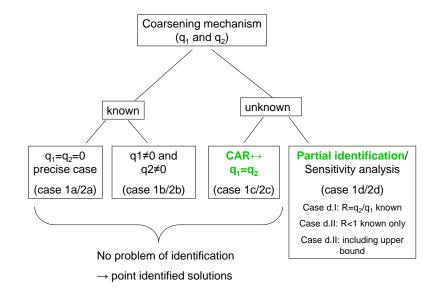
$$\begin{split} L(q_1, q_2, \beta_A) &= \prod_{i=1}^{N_1} (1 - q_1) \frac{\exp(\beta_{A0} + x_{i1}\beta_{A1} + x_{i2}\beta_{A2})}{1 + \exp(\beta_{A0} + x_{i1}\beta_{A1} + x_{i2}\beta_{A2})} \prod_{i=N_1+1}^{N_2} (1 - q_2) \frac{1}{1 + \exp(\beta_{A0} + x_{i1}\beta_{A1} + x_{i2}\beta_{A2})} \\ &\prod_{i=N_2+1}^{N} q_1 \frac{\exp(\beta_{A0} + x_{i1}\beta_{A1} + x_{i2}\beta_{A2})}{1 + \exp(\beta_{A0} + x_{i1}\beta_{A1} + x_{i2}\beta_{A2})} + \frac{q_2}{1 + \exp(\beta_{A0} + x_{i1}\beta_{A1} + x_{i2}\beta_{A2})} \end{split}$$

 \Rightarrow estimators: \hat{eta}_0 , \hat{eta}_1 , \hat{eta}_2 , $\hat{m{q}}_1$, $\hat{m{q}}_2$

In both models: Problem of identification

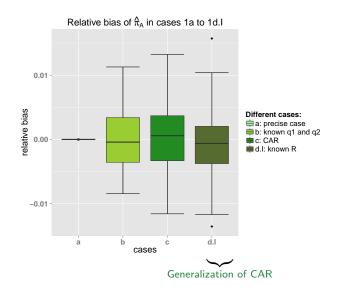
J.Plaß (Institute for statistics)

Epistemic uncertainty - Models of interest

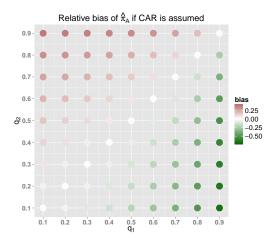


J.Plaß (Institute for statistics)

Model 1 under epistemic uncertainty - Cases 1a to d.I



Model 1c: Consequences if CAR is not valid

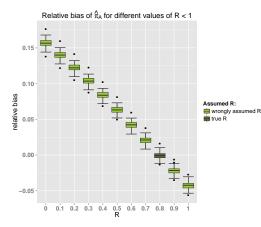


- Median rel. bias of π̂_A for combinations of q₁ and q₂
- Max. rel. bias of 0.72
 if q₁ = 0.9 and q₂ = 0.1
- No symmetric problem

Extension of multinomial logit model

Accounting for epistemic uncertainty

Model 1d.II: Assumption of R < 1 only



- Median relative bias between -0.05 and 0.18
- $\hat{\pi}_A \in [0.64, 0.78]$ if assumption is involved (true $\pi_A = 0.67$)

•
$$\hat{\pi}_A \in \left[\frac{n_A}{n}, \frac{n_A+n_{AB}}{n}\right] = [0.40, 0.77]$$
 if no assumption implied

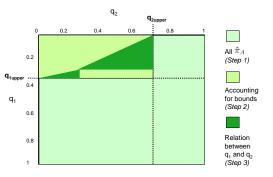
Model 1d.III: Involving upper bounds \bar{q}_1 and \bar{q}_2

How can the set of possible $\hat{\pi}_A$ be restricted by using the empirical evidence only?

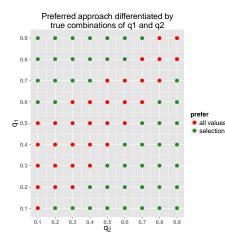
- First implying upper bounds only
- Involve relation between q₁ and q₂ additionally: P(Y = AB) = π_Aq₁ + (1 - π)q₂

$$q_1 = \frac{n_{AB} - nq_2(1 - \pi_A)}{n\pi_A}$$
$$q_2 = \frac{n_{AB} - nq_1\pi_A}{n(1 - \pi_A)}$$

Implying a selection of $\hat{\pi}_A$ only



Model 1d.III: Involving upper bounds \bar{q}_1 and \bar{q}_2



- Median relative bias for the first dataset are depicted
- Method seems to be reasonable in cases that strongly differ from CAR only:

$$egin{aligned} q_1 &= q_2 &= q \ \hline n_{AB} &- qn(1-\pi_A) \ \hline n\pi_A \ &= & rac{n_{AB} - qn\pi_A}{n(1-\pi_A)} \end{aligned}$$

 \Rightarrow only valid if π_A =0.5

Multinomial logit model under ontologic uncertainty

Idea and particularity of the model

- Coarse values represent the truth
 - \Rightarrow Multinomial logit model with coarse observations (e.g. "A or B") as own categories
- No further changes compared to precise multinomial logit model
- \Rightarrow Predictions by means of Dempster-Shafer theory
- \Rightarrow How far does it make sense to imply additional assumptions?
- \Rightarrow Comparison of results under epistemic and ontologic uncertainty Evaluation of estimators if wrong type of uncertainty is assumed

- Important to distinguish between epistemic and ontologic uncertainty
- For dealing with epistemic uncertainty some methods of the framework of missing data can be applied
- For dealing with ontologic uncertainty *-notation could be introduced
 - General dealing of coarse data and prediction
 - Formal background can be provided by random set theory and DST
- Multinomial logit model can be extended by accounting for...
 - $\bullet \ ... \ epistemic \ uncertainty: Extending likelihood <math display="inline">\Rightarrow$ Identification problem
 - \Rightarrow Identifying restrictions as CAR or partial identification
 - ... ontologic uncertainty: Extending model by implying coarse categories as own categories

Literature

Heitjan, D. and Rubin, D.

Ignorability and Coarse Data.

Annals of Statistics, Volume 19, Issue 4, 1991.

🔈 Manski. C.

Partial Identification of Probability Distributions. Springer, 2003.

Nguyen, H.

An Introduction to Random Sets. CRC press, 2006.

A Simple View of the Dempster-Shafer Theory of Evidence and its Implication for the Rule of Combination.

Al Magazine, Volume 7, Issue 2, 1986.