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NPI 1

Underlying model: Multinomial NPI with inference based upon the
next observation

(Graphical) foundation on a probability wheel

n observations create n equidistant intervals on the circle, i.e slices
on the wheel

Circular-A(n) assumption gives that next observation will fall into

any given slice with probability 1
n

Restrictions on the ordering of the observations onto the wheel.
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NPI 2

Let us assume we have n observations of K different classes,
with nj ≥ 0 for j = 1, . . . ,K

Calculation of the class lower/upper probabilities based on one
future observation:

max(0,
nj − 1

n
) ≤ P(yn+1 = cj) ≤ min(

nj + 1

n
, 1)

=⇒ set of F-probability intervals
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Idea: Starting with the lower probabilities as working ’distribution’,
then adding mass to classes until it is a probability distribution.

In what way to assign the mass?

Is it optimal?

Minimum entropy algorithm has already been developed for
ordinal-NPI by [Crossman, R.J. et al].
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Entropy

Contribution of two classes to the complete entropy H:

H1(x1, x2) := − log(x1)x1 − log(x2)x2.

Entropy H is concave function, so H1 too.

Mass assignment of m to either x1 or x2 or both.

Taking advantage of the concavity:

I H1(x1 + m− c , x2 + c) ≥ H1(x1 + m, x2) = H1(x1, x2 + m) for
0 ≤ c ≤ m and x1 = x2

I H1(x1 + m, x2) ≤ H1(x1, x2 + m) for x1 > x2

I H1(x1 + m, 0) ≤ H1(x1, m) for x1 > 0
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Algorithm outline

Starting with lower probabilities, as these mass assignments are at
least required.

In each step assigning as much remaining mass as possible to those
classes with highest lower probability.

’as much mass as possible’ is enforced by the corresponding upper
probability or the probability distribution (sum to 1)
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Minimum Entropy Algorithm for NPI
Input: Probability intervals [li , ui ]

n
1 as generated by the NPI

Output: A probability distribution p̂ = (p̂1, p̂2, . . . , p̂n)

Helping functions:
Sum(x): returns the sum of the elements of array x
getMaxIndex(x, S): returns the first index of the maximum value

of the array x considering only indices in S

Initialization: S ← 1, . . . , n

minEntropyNPI (l , u, p̂){
for (i = 1 to n) do {p̂i ← li}
mass ← 1− Sum(p̂)
while (mass > 0) do {

index ← getMaxIndex(p̂, S)
d ← uindex − p̂index

if (d ≤ mass) then {
p̂index ← uindex

S ← S − {index}
mass ← mass − d

} else {
p̂index ← p̂index + mass
mass ← 0

}
}

}
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Properties

Algorithm does not assign unobserved classes any mass.

Step-wise optimal

Minimum entropy distribution complies with the probability wheel

Algorithm gives only 1 minimum entropy distribution. There may
be more!!

- negligible as main interest is entropy value, not underlying
distribution

Paul Fink, LMU Munich Minimum Entropy Algorithm 8/10



Future Prospects

Minimum and maximum entropy create entropy intervals as
guarantee and potential

In case of classification trees:
Choosing on a split variable based on comparisons of those
intervals
Reasonable opitmality criteria:

I Maximality (only taking the potential into account)

I Interval dominance
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