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introduction

I comparison of conventional and imprecise probability approaches to
statistics

I theoretical perspective and pragmatical perspective (application to the
“fundamental problem of practical statistics”)

I only statistics (not personal decision making)

I only statistical inference: given a statistical model {Pθ : θ ∈ Θ} on X
I a personal viewpoint

fundamental problem of practical statistics (Pearson, 1920): An “event” has
occurred p times out of p+q = n trials, where we have no a priori knowledge
of the frequency of the event in the total population of occurrences. What is
the probability of its occurring r times in a further r + s = m trials?

I sequence of binary random variables: (X1,X2, . . .) ∈ X = {0, 1}N

I statistical model: X1,X2, . . .
i.i.d.∼ Ber(θ) with θ ∈ Θ = [0, 1]

I data:
∑n

i=1 Xi = p

I quantity of interest: Pθ(
∑n+m

i=n+1 Xi = r) =
(
r
m

)
θr (1− θ)s
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comparison

Bayesian approach classical approach

calibration, no prior

?
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Bayesian approach

I central idea: uncertainty about θ described by a probability distribution π
on Θ

I model: π × Pθ on Θ×X
I necessary choice: prior probability distribution

I result: posterior probability distribution (expectation / mode, credible
interval/region)

I properties: invariances (transformation, temporal, likelihood principle, . . . )

example: fundamental problem of practical statistics

I choice of prior probability distribution: e.g., conjugate prior θ ∼ Beta(α, β)
with α, β ∈ R>0

I β = α from symmetry, but choice of α is difficult (Bayes: 1, Jeffreys: 1
2 ,

Haldane: 0)

I posterior probability distribution: θ ∼ Beta(α+ p, β + q)

I expectation and credible interval for
(
r
m

)
θr (1− θ)s analytically or

numerically
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classical approach

I central idea: comparison of inference methods on the basis of their repeated
sampling performance (as a function of θ)

I model: {Pθ : θ ∈ Θ} on X
I necessary choice: inference method (or comparison criterion)

I result: inference (point estimate, confidence interval/region)

I properties: repeated sampling calibration

example: fundamental problem of practical statistics

I choice of repetition: e.g., n fixed (binomial experiment)

I choice of comparison criterion: e.g., maximum mean squared error

I optimal inference method (minimax MSE estimator of
(
r
m

)
θr (1− θ)s)

analytically

I confidence interval for
(
r
m

)
θr (1− θ)s is more difficult
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comparison

Bayesian approach classical approach

IP approach

calibration, no priorcalibration, no prior

simplicity, invariances

?
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IP approach
I central idea: uncertainty about θ described by a lower/upper prevision (with

core Γ) on Θ

I model: {π × Pθ : π ∈ Γ} on Θ×X
I necessary choice: prior lower/upper prevision (in particular: amount of

imprecision)

I result: posterior lower/upper prevision (point estimate?, credible
interval/region?)

I properties: invariances (transformation, likelihood principle, . . . )

example: fundamental problem of practical statistics

I choice of prior lower/upper prevision: e.g., IDM (set of conjugate priors)
θ ∼ {Beta(α, β) : α, β ∈ R>0, α+ β = s} with s ∈ R>0

I choice of s is difficult (Walley: 2 or 1)

I posterior lower/upper prevision:
θ ∼ {Beta(α+ p, β + q) : α, β ∈ R>0, α+ β = s}

I (imprecise) expectation of
(
r
m

)
θr (1− θ)s analytically or numerically, but is

neither a point estimate nor a confidence/credible interval
Marco Cattaneo @ LMU Munich Imprecise probability for statistical problems: is it worth the candle? 7/11



comparison

Bayesian approach classical approach

IP approach likelihood approach

calibration, no priorcalibration, no prior

simplicity, invariances
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likelihood approach

I central idea: uncertainty about θ described by a likelihood function
(possibility measure) lik on Θ

I model: {Pθ : θ ∈ Θ} on X , and lik on Θ

I necessary choice: (prior likelihood function)

I result: (posterior) likelihood function (maximum likelihood estimate,
likelihood interval/region)

I properties: invariances (transformation, likelihood principle, . . . ), sometimes
repeated sampling calibration

example: fundamental problem of practical statistics

I no choice necessary

I (posterior) likelihood function: lik(θ) ∝ θp (1− θ)q

I maximum likelihood estimate and likelihood interval for
(
r
m

)
θr (1− θ)s

analytically or numerically

I repeated sampling calibration is easy (regular problem)
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comparison

Bayesian approach classical approach

IP approach likelihood approach

calibration, no prior

simplicity, invariances
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conclusion

I imprecise probabilities (as sets of probabilities) appear naturally in many
statistical problems

I conventional approaches to statistics have advantages and disadvantages
compared to each other

I is there some good reason for preferring the IP approach (to statistics) to
the Bayesian one?

I imprecise expectations are often misinterpreted as confidence/credible
intervals

I choosing the amount of imprecision in prior lower/upper previsions is
particularly difficult

I the likelihood approach to statistics seems to be a better compromise
between the Bayesian and classical ones
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