Imprecise probability for statistical problems: is it worth the candle?

Marco Cattaneo Department of Statistics, LMU Munich

26 November 2012

introduction

- comparison of conventional and imprecise probability approaches to statistics
- theoretical perspective and pragmatical perspective (application to the "fundamental problem of practical statistics")
- only statistics (not personal decision making)
- ▶ only statistical **inference**: given a statistical model $\{P_{\theta} : \theta \in \Theta\}$ on \mathcal{X}
- a personal viewpoint
- fundamental problem of practical statistics (Pearson, 1920): An "event" has occurred p times out of p + q = n trials, where we have no a priori knowledge of the frequency of the event in the total population of occurrences. What is the probability of its occurring r times in a further r + s = m trials?
 - ▶ sequence of binary random variables: $(X_1, X_2, ...) \in \mathcal{X} = \{0, 1\}^{\mathbb{N}}$
 - ▶ statistical model: $X_1, X_2, ... \stackrel{i.i.d.}{\sim} Ber(\theta)$ with $\theta \in \Theta = [0, 1]$
 - data: $\sum_{i=1}^n X_i = p$
 - quantity of interest: $P_{\theta}(\sum_{i=n+1}^{n+m} X_i = r) = \binom{r}{m} \theta^r (1-\theta)^s$

comparison

Bayesian approach

classical approach

Bayesian approach

- \blacktriangleright central idea: uncertainty about θ described by a probability distribution π on Θ
- model: $\pi \times P_{\theta}$ on $\Theta \times \mathcal{X}$
- necessary choice: prior probability distribution
- result: posterior probability distribution (expectation / mode, credible interval/region)
- ▶ properties: invariances (transformation, temporal, likelihood principle, ...)

- choice of prior probability distribution: e.g., conjugate prior θ ~ Beta(α, β) with α, β ∈ ℝ_{>0}
- β = α from symmetry, but choice of α is difficult (Bayes: 1, Jeffreys: ¹/₂, Haldane: 0)
- **posterior** probability distribution: $\theta \sim Beta(\alpha + p, \beta + q)$
- ▶ expectation and credible interval for $\binom{r}{m} \theta^r (1-\theta)^s$ analytically or numerically

classical approach

- central idea: comparison of inference methods on the basis of their repeated sampling performance (as a function of θ)
- model: $\{P_{\theta} : \theta \in \Theta\}$ on \mathcal{X}
- necessary choice: inference method (or comparison criterion)
- result: inference (point estimate, confidence interval/region)
- properties: repeated sampling calibration

- choice of repetition: e.g., n fixed (binomial experiment)
- choice of comparison criterion: e.g., maximum mean squared error
- optimal inference method (minimax MSE estimator of $\binom{r}{m} \theta^r (1-\theta)^s$) analytically
- confidence interval for $\binom{r}{m} \theta^r (1-\theta)^s$ is more **difficult**

IP approach

IP approach

- central idea: uncertainty about θ described by a lower/upper prevision (with core Γ) on Θ
- model: $\{\pi \times P_{\theta} : \pi \in \Gamma\}$ on $\Theta \times \mathcal{X}$
- necessary choice: prior lower/upper prevision (in particular: amount of imprecision)
- result: posterior lower/upper prevision (point estimate?, credible interval/region?)
- ▶ properties: invariances (transformation, likelihood principle, ...)

- ► choice of prior lower/upper prevision: e.g., IDM (set of **conjugate** priors) $\theta \sim \{Beta(\alpha, \beta) : \alpha, \beta \in \mathbb{R}_{>0}, \alpha + \beta = s\}$ with $s \in \mathbb{R}_{>0}$
- choice of s is difficult (Walley: 2 or 1)
- ▶ **posterior** lower/upper prevision: $\theta \sim \{Beta(\alpha + p, \beta + q) : \alpha, \beta \in \mathbb{R}_{>0}, \alpha + \beta = s\}$
- (imprecise) expectation of $\binom{r}{m} \theta^r (1-\theta)^s$ analytically or numerically, but is neither a point estimate nor a confidence/credible interval

comparison

likelihood approach

- central idea: uncertainty about θ described by a likelihood function (possibility measure) *lik* on Θ
- model: $\{P_{\theta} : \theta \in \Theta\}$ on \mathcal{X} , and *lik* on Θ
- necessary choice: (prior likelihood function)
- result: (posterior) likelihood function (maximum likelihood estimate, likelihood interval/region)
- properties: invariances (transformation, likelihood principle, ...), sometimes repeated sampling calibration

- no choice necessary
- (posterior) likelihood function: $lik(\theta) \propto \theta^p (1-\theta)^q$
- ▶ maximum likelihood estimate and likelihood interval for $\binom{r}{m} \theta^r (1-\theta)^s$ analytically or numerically
- repeated sampling calibration is easy (regular problem)

comparison

conclusion

- imprecise probabilities (as sets of probabilities) appear naturally in many statistical problems
- conventional approaches to statistics have advantages and disadvantages compared to each other
- is there some good reason for preferring the IP approach (to statistics) to the Bayesian one?
 - imprecise expectations are often misinterpreted as confidence/credible intervals
 - choosing the amount of imprecision in prior lower/upper previsions is particularly difficult
- the likelihood approach to statistics seems to be a better compromise between the Bayesian and classical ones