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Robustness versus consistency in ill-posed statistical problems problems

Parametric Statistical Problem:

Z1, . . . ,Zn ∼ P0 i.i.d.

Parametric Model:

P0 ∈ P =
{
Pθ
∣∣ θ ∈ Θ

}
Goal: Estimation of the true θ0 ∈ Θ

Functional Formalization:

T : P → Rk , Pθ 7→ θ

Example: Pθ = N (θ, 1), θ = T (Pθ) =
∫
z Pθ(dz)
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Robustness versus consistency in ill-posed statistical problems problems

Non-Parametric Statistical Problem

Z1, . . . ,Zn ∼ P0 i.i.d.

Non-Parametric Model:

P0 ∈ P = a large set of probability measures

Functional Formalization:

T : P → Rk , P 7→ T (P)

Goal: Estimation of T (P0)

Example: T (P) =
∫
z P(dz)

P =
{
P
∣∣∣ ∫ |z |P(dz) < ∞

}
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Robustness versus consistency in ill-posed statistical problems problems

Non-Parametric Regression

(X1,Y1), . . . , (Xn,Yn) ∼ P0 i.i.d.

Regression:

yi = f0(xi ) + εi , i ∈ {1, . . . , n}

Functional Formalization:

T : P → F , P 7→ T (P)

I F = a large set of functions f : x 7→ f (x)

I T (P) = f : x 7→
∫
y P(dy |x)
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Robustness versus consistency in ill-posed statistical problems problems

Non-Parametric Classification

(X1,Y1), . . . , (Xn,Yn) ∼ P0 i.i.d.

Classification:

Yi ∈ {0, 1} , i ∈ {1, . . . , n}

Functional Formalization:

T : P → F , P 7→ T (P)

I F = a large set of functions f : x 7→ f (x)

I T (P) = f : x 7→ P(Y = 1 |X = x)
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Robustness versus consistency in ill-posed statistical problems problems

Good Estimators

Observations: Z1, . . . ,Zn ∼ P0 i.i.d.

Statistical functional:

T : P → F , P 7→ T (P)

Goal: Estimation of T (P0) (the true P0 is unknown)

Desirable properties of an estimator

Sn : Zn → F , (z1, . . . , zn) 7→ Sn(z1, . . . , zn)

are

I Consistency: Sn
P0−−−→ T (P0) for n→∞

I Robustness
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Robustness versus consistency in ill-posed statistical problems problems

Qualitative Robustness

Small errors in the data should not change the results too much.

I “Small errors in the data”
I Small errors in many of the data points (rounding etc.)
I Large errors in a few data points (gross errors, outliers)

I “should not change the results too much”
i.e.: the distribution of the estimator is hardly affected

(distribution of the estimator = performance of the estimator)

Qualitative Robustness: (Hampel ,1971)
A sequence of estimators (Sn)n∈N is called qualitatively robust if

∀P ∀ ε > 0 ∃ δ > 0 such that ∀Q with dPro(Q,P) < δ

sup
n∈N

dPro
(
Sn(Qn), Sn(Pn)

)
< ε
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Robustness versus consistency in ill-posed statistical problems problems

Qualitative Robustness – Parametric Example
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Robustness versus consistency in ill-posed statistical problems problems

Qualitative Robustness – Parametric Example
”mean” applied in 1000 runs
each run consists of a sample with 500 data points

Normal distribution Mixture distribution
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Robustness versus consistency in ill-posed statistical problems problems

Qualitative Robustness – Parametric Example
”median” applied in 1000 runs
each run consists of a sample with 500 data points

Normal distribution Mixture distribution
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Robustness versus consistency in ill-posed statistical problems

Qualitative Robustness – Non-Parametric Example

Regression:

0 5 10 15 20

0
2

4
6

x

y

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

Robert Hable University of Bayreuth Page 10



Robustness versus consistency in ill-posed statistical problems

Qualitative Robustness – Non-Parametric Example

Regression: k-nearest neighbor
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Robustness versus consistency in ill-posed statistical problems

Qualitative Robustness – Non-Parametric Example

Regression: k-nearest neighbor

0 5 10 15 20

0
2

4
6

x

y

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

Robert Hable University of Bayreuth Page 12



Robustness versus consistency in ill-posed statistical problems

Good Estimators

Observations: Z1, . . . ,Zn ∼ P0 i.i.d.

Statistical functional:

T : P → F , P 7→ T (P)

Goal: Estimation of T (P0) (the true P0 is unknown)

Desirable properties of an estimator

Sn : Zn → F , (z1, . . . , zn) 7→ Sn(z1, . . . , zn)

are

I Consistency: Sn
P0−−−→ T (P0) for n→∞

I Robustness
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Robustness versus consistency in ill-posed statistical problems

Ill-Posed Statistical Problems

P a set of probability measures
F a metric space

Dey & Ruymgaart (1999):

I The statistical problem

T : P → F , P 7→ T (P)

is well-posed if T is continuous. That is:

if Pn
w

=⇒ P0 then lim
n→

T (Pn) = T (P0)

I The statistical problem is ill-posed if T is not continuous.

Parametric models : T is usually well-posed
Non-parametric models : T is often ill-posed

Robert Hable University of Bayreuth Page 14
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Robustness versus consistency in ill-posed statistical problems

Ill-Posed Statistical Problems

P a set of probability measures
F a metric space

Reformulation of Cueva’s generalization of Hampel’s theorem:

Theorem: If the statistical problem

T : P → F , P 7→ T (P)

is ill-posed, then no estimator

Sn : Zn → F , (z1, . . . , zn) 7→ Sn(z1, . . . , zn)

can simultaneously be consistent and qualitatively robust.
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Robustness versus consistency in ill-posed statistical problems

Example: Density Estimation
P: the set of all probability measures P on (Rk ,Bk)

with Lebesgue-density, denoted by

fP : Rk → [0,∞) .

Theorem: (Cuevas) The statistical functional

T : P → L1(Rk), P 7→ fP

is discontinuous at every P ∈ P.

Corollary: Let
X1, . . . ,Xn ∼ P i.i.d.

and let Sn, n ∈ N, be a sequence of density-estimators which is
(weakly) consistent for every P ∈ P. Then, at every P ∈ P, the
estimator Sn, n ∈ N, is not qualitatively robust.
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Robustness versus consistency in ill-posed statistical problems

What can be done: Idea 1
Use weaker properties:

consistency ; risk-consistency
robustness ; risk-robustness

Regression/Classification: (X1,Y1), . . . , (Xn,Yn) ∼ P0 i.i.d.

Risk of a predictor f : RP0(f ) =

∫
L
(
y , f (x)

)
P0

(
d(x , y)

)
Risk-consistency:

RP0

(
Sn
) P0−−−→ RP0

(
T (P0)

)
for n→∞

Risk-robustness:

small errors should not change the estimator too much

Robert Hable University of Bayreuth Page 17
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Robustness versus consistency in ill-posed statistical problems

Ill-Posed Statistical Problems
Theorem: If the statistical problem

T : P → F , P 7→ T (P)

is ill-posed, then no estimator

Sn : Zn → F , (z1, . . . , zn) 7→ Sn(z1, . . . , zn)

can simultaneously be consistent and qualitatively robust.

Theorem (Regression): If the statistical regression problem

T : P → F , P 7→ T (P)

is ill-posed, then no estimator

Sn :
(
(x1, y1), . . . , (xn, yn)

)
7→ Sn

(
(x1, y1), . . . , (xn, yn)

)
can simultaneously be risk-consistent and qualitatively risk-robust.
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Robustness versus consistency in ill-posed statistical problems

What can be done: Idea 2

Qualitative Robustness: (Hampel ,1971)
A sequence of estimators (Sn)n∈N is called qualitatively robust if

∀P ∀ ε > 0 ∃ δ > 0 such that ∀Q with dPro(Q,P) < δ

sup
n∈N

dPro
(
Sn(Qn), Sn(Pn)

)
< ε

Finite Sample Qualitative Robustness:
A sequence of estimators (Sn)n∈N is called qualitatively robust if

∀P ∀ ε > 0 ∀ n ∈ N ∃ δn > 0 such that ∀Q with dPro(Q,P) < δn

dPro
(
Sn(Qn),Sn(Pn)

)
< ε
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Robustness versus consistency in ill-posed statistical problems

Example: Nonparametric Regression

For example,

Y = f0(X ) + g(X )ε

with

I Y : output variable

I X : input variable

I f0 : regression function (totally unknown)

I ε : error term

I g : heteroscedasticity (unknown)

Goal: Estimation of the unknown regression function f0

Robert Hable University of Bayreuth Page 20



Robustness versus consistency in ill-posed statistical problems

Regularized Kernel Methods

Yi = f0(Xi )+g(Xi )εi , (Xi ,Yi ) ∼ P i.i.d., i ∈ {1, . . . , n}
Goal: Estimation of f0 : X → Y ⊂ R

I Loss function
L : Y ×R → [0,∞)

L(y , t) : loss caused by estimation t = f̂n(x) if y is true
I Risk of an estimate f̂n : X → R∫

L
(
y , f̂n(x)

)
P
(
d(x , y)

)

Robert Hable University of Bayreuth Page 21
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Regularized Kernel Methods

Yi = f0(Xi )+g(Xi )εi , (Xi ,Yi ) ∼ P i.i.d., i ∈ {1, . . . , n}
Goal: Estimation of f0 : X → Y ⊂ R

I Loss function
L : Y ×R → [0,∞)

L(y , t) : loss caused by estimation t = f̂n(x) if y is true
I empirical Risk of an estimate f̂n : X → R

1

n

n∑
i=1

L
(
yi , f̂n(xi )

)

I RKHS H (certain Hilbert space of functions f : X → R)
I Estimator

Sn
(
(x1, y1), . . . , (xn, yn)

)
= arg inf

f ∈H

1

n

n∑
i=1

L
(
yi , f (xi )

)
+λ‖f ‖2H
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Reproducing Kernel Hilbert Space (RKHS)

Regularized kernel methods

Sn : (X × Y)n → H ,(
(x1, y1), . . . , (xn, yn)

)
7→ arg inf

f ∈H

1

n

n∑
i=1

L
(
yi , f (xi )

)
+ λ‖f ‖2H

with H a reproducing kernel Hilbert space (RKHS)

Reproducing kernel Hilbert space H

I a Hilbert space of functions f : X → R

I generated by a kernel function k : X × X → R

I reproducing property〈
f , k(x , ·)

〉
H

= f (x) ∀ x ∈ X , ∀ f ∈ H
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Example: Gaussian Kernel

Gaussian Kernel X = R

k : R×R → R , (x , x ′) 7→ exp
(
− 1

γ2
|x − x ′|2

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x−x’

H ⊂ Lp(P) dense
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Example: Polynomial Kernel

Polynomial Kernel X = R

k : R×R → R , (x , x ′) 7→
(
x · x ′ + c

)m

−2 −1 0 1 2 3 4 5

−
20

0
20

40
60

x−x’

H =
{
f : R→ R

∣∣ f a polynomial with degree ≤ m
} ∼= Rm+1
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Representer Theorem

How to calculate the estimator?

Dn =
(
(x1, y1), . . . , (xn, yn)

)
Estimator

fDn,λ = arg inf
f ∈H

1

n

n∑
i=1

L
(
yi , f (xi )

)
+ λ‖f ‖2H

Representer Theorem

There are αDn,1, . . . , αDn,n ∈ R such that

fDn,λ =
n∑

i=1

αDn,ik(xi , ·) .

−→ just solve a finite convex optimization problem
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. . . and this really works?

Yes, quite good.
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Risk-Consistency
Risk of a predictor f : X → R

RP(f ) =

∫
L
(
y , f (x)

)
P
(
d(x , y)

)
=̂ Quality of f

Dn =
(
(X1,Y1), . . . , (Xn,Yn)

)
Estimator:

fDn,λn = arg inf
f ∈H

1

n

n∑
i=1

L
(
Yi , f (Xi )

)
+ λn‖f ‖2H

Risk-consistency

RP(fDn,λn) −−−−→
n→∞

inf
f :X→R

RP(f ) in probability

essentially if

I H ⊂ Lp(P) dense (e.g. Gaussian kernel)
I λn → 0 not too fast (!)
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Robustness

Loss function L should be Lipschitz continuous
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ε-insensitive pinball least squares

Then: Regularized jernel methods are

either risk-consistent
for λn ↘ 0

or qualitatively robust

for λn ↘ λ0 > 0

But: always finite sample qualitatively robust
Hable & Christmann (2011)
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What can be done: Idea 3

Goal: estimate a solution f ∗ : X → R of

RP(f ) = min! f : X → R

or
inf
f ∈H
RP(f ) = min! f ∈ H .

However, these optimization problems are ill-posed:

I either qualitatively robust or consistent

I there is no uniform rate of convergence to the solution
(without substantial assumptions on P)

I statistical inference is impossible
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Rates of Convergence

Risk-consistency

RP(fDn,λn) −−−−→
n→∞

inf
f :X→R

RP(f ) in probability

How fast is this convergence?

Is there a uniform rate rn such that

rn
(
RP(fDn,λn)− inf

f :X→R
RP(f )

)
−−−−→
n→∞

0 in probability

for every P? −→ No! (no-free-lunch theorem)

Instead,
rates rn of convergence under assumptions on P

e.g. Steinwart and Scovel (2007), Caponnetto and De Vito (2007), Blanchard

et al. (2008), Steinwart et al. (2009), Mendelson and Neeman (2010)
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What can be done: Idea 3
Goal: estimate a solution f ∗ : X → R of

RP(f ) = min! f : X → R

or
inf
f ∈H
RP(f ) = min! f ∈ H .

However, these optimization problems are ill-posed:
I either qualitatively robust or consistent
I there is no uniform rate of convergence to the solution

(without substantial assumptions on P)

I statistical inference is impossible

Idea 3: Do not try to solve ill-posed problems; pose them well!

So, consider the regularized problem

RP(f ) + λ0‖f ‖2H = min! f ∈ H .
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Smooth Approximation of the Regression Function

I Instead of estimating a solution f ∗ : X → R of

RP(f ) = min! f : X → R

we may estimate the solution fP,λ0 of the regularized problem

RP(f ) + λ0‖f ‖2H = min! f ∈ H .

fP,λ0 serves as a “smoother approximation” of f ∗.

I The regularized problem is equivalent to

RP(f ) = min! f ∈ H , ‖f ‖H ≤ r0 .

r0: bound on complexity of “smoother approximation”
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Example

λ = 1
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Example

λ = 0.1
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Example

λ = 0.01
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Example

λ = 0.001
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Example

λ = 0.0001
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Example

λ = 0.00001
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Example

λ = 0.000001
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Asymptotic Normality of Regularized Problem

Under some

I assumptions on X , L, k (↔ H), and λDn −−−−→n→∞
λ0

I but (essentially) no assumptions on P,

we have

√
n
(
R(fDn,λDn

)−R(fP,λ0)
)

; N (0, σ2)

and, even more,

√
n
(
fDn,λDn

− fP,λ0
)

; Gaussian process in H
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