Robustness versus consistency in ill-posed statistical problems

> Robert Hable Department of Statistics LMU Munich

Partially joint work with Andreas Christmann

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Parametric Model:

$$P_0 \in \mathcal{P} = \{P_\theta \mid \theta \in \Theta\}$$

Goal: Estimation of the true $\theta_0 \in \Theta$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Parametric Model:

$$P_0 \in \mathcal{P} = \{P_\theta \mid \theta \in \Theta\}$$

Goal: Estimation of the true $\theta_0 \in \Theta$

Functional Formalization:

$$T : \mathcal{P} \to \mathbb{R}^k, \qquad P_\theta \mapsto \theta$$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Parametric Model:

$$P_0 \in \mathcal{P} = \{P_\theta \mid \theta \in \Theta\}$$

Goal: Estimation of the true $\theta_0 \in \Theta$

Functional Formalization:

$$T : \mathcal{P} \to \mathbb{R}^k, \qquad P_\theta \mapsto \theta$$

Example: $P_{\theta} = \mathcal{N}(\theta, 1)$, $\theta = T(P_{\theta}) = \int z P_{\theta}(dz)$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Non-Parametric Model:

 $P_0 \in \mathcal{P} = a$ large set of probability measures

Functional Formalization:

$$T : \mathcal{P} \to \mathbb{R}^k, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Non-Parametric Model:

 $P_0 \in \mathcal{P} =$ a large set of probability measures

Functional Formalization:

$$T : \mathcal{P} \to \mathbb{R}^k, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$

Example: $T(P) = \int z P(dz)$

$$\mathcal{P} = \left\{ P \mid \int |z| P(dz) < \infty \right\}$$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Non-Parametric Model:

 $P_0 \in \mathcal{P} =$ a large set of probability measures

Functional Formalization:

$$T : \mathcal{P} \to \mathbb{R}^k, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$

Example: $T(P) = \int z P(dz)$

$$\mathcal{P} = \left\{ P \mid \int |z| P(dz) < \infty \right\}$$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Non-Parametric Model:

 $P_0 \in \mathcal{P} = a$ large set of probability measures

Functional Formalization:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$

$$Z_1,\ldots,Z_n \sim P_0$$
 i.i.d.

Non-Parametric Model:

 $P_0 \in \mathcal{P} = a$ large set of probability measures

Functional Formalization:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$

Example: $T(P) = \text{the } \lambda \text{-density of } P$

$$\mathcal{P} = \left\{ P \mid P \text{ has a } \lambda \text{-density} \right\}$$

Non-Parametric Regression

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim P_0$$
 i.i.d.

Regression:

$$y_i = f_0(x_i) + \varepsilon_i, \qquad i \in \{1, \ldots, n\}$$

Functional Formalization:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

• \mathcal{F} = a large set of functions $f : x \mapsto f(x)$

•
$$T(P) = f : x \mapsto \int y P(dy|x)$$

Non-Parametric Classification

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim P_0$$
 i.i.d.

Classification:

$$Y_i \in \{0,1\}, \qquad i \in \{1,\ldots,n\}$$

Functional Formalization:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

•
$$\mathcal{F}$$
 = a large set of functions $f : x \mapsto f(x)$

$$T(P) = f : x \mapsto P(Y = 1 | X = x)$$

Observations: $Z_1, \ldots, Z_n \sim P_0$ i.i.d.

Statistical functional:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$ (the true P_0 is unknown)

Observations: $Z_1, \ldots, Z_n \sim P_0$ i.i.d.

Statistical functional:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$ (the true P_0 is unknown)

Desirable properties of an estimator

$$S_n : \mathcal{Z}^n \rightarrow \mathcal{F}, \qquad (z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$$

are

Observations: $Z_1, \ldots, Z_n \sim P_0$ i.i.d.

Statistical functional:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$ (the true P_0 is unknown)

Desirable properties of an estimator

$$S_n : \mathcal{Z}^n \to \mathcal{F}, \qquad (z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$$

are

• Consistency:
$$S_n \xrightarrow{P_0} T(P_0)$$
 for $n \to \infty$

Observations: $Z_1, \ldots, Z_n \sim P_0$ i.i.d.

Statistical functional:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$ (the true P_0 is unknown)

Desirable properties of an estimator

$$S_n : \mathcal{Z}^n \rightarrow \mathcal{F}, \qquad (z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$$

are

► Consistency:
$$S_n \xrightarrow{P_0} T(P_0)$$
 for $n \to \infty$

Robustness

Small errors in the data should not change the results too much.

Small errors in the data should not change the results too much.

- "Small errors in the data"
 - Small errors in many of the data points (rounding etc.)
 - Large errors in a few data points (gross errors, outliers)

Small errors in the data should not change the results too much.

- "Small errors in the data"
 - Small errors in many of the data points (rounding etc.)
 - Large errors in a few data points (gross errors, outliers)
- "should not change the results too much"
 - i.e.: the distribution of the estimator is hardly affected

(distribution of the estimator = performance of the estimator)

Small errors in the data should not change the results too much.

- "Small errors in the data"
 - Small errors in many of the data points (rounding etc.)
 - Large errors in a few data points (gross errors, outliers)
- "should not change the results too much"
 - i.e.: the distribution of the estimator is hardly affected

(distribution of the estimator = performance of the estimator)

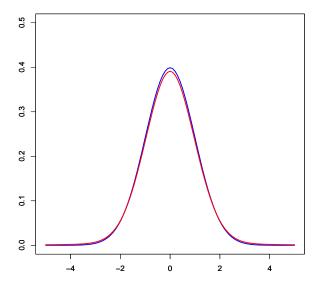
Qualitative Robustness: (Hampel ,1971)

A sequence of estimators $(S_n)_{n \in \mathbb{N}}$ is called qualitatively robust if

$$\forall P \ \forall \epsilon > 0 \ \exists \delta > 0 \text{ such that } \forall Q \text{ with } d_{\mathsf{Pro}}(Q, P) < \delta$$

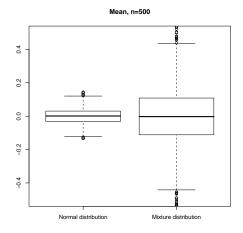
$$\sup_{n\in\mathbb{N}} d_{\operatorname{Pro}}(S_n(Q^n),S_n(P^n)) < \varepsilon$$

Qualitative Robustness – Parametric Example



Qualitative Robustness – Parametric Example

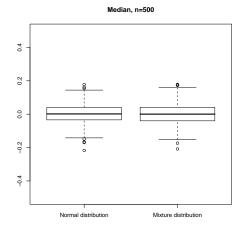
"mean" applied in 1000 runs each run consists of a sample with 500 data points



LMU Munich

Qualitative Robustness – Parametric Example

"median" applied in 1000 runs each run consists of a sample with 500 data points

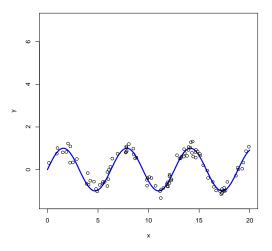


Robert Hable

LMU Munich

Qualitative Robustness – Non-Parametric Example

Regression:

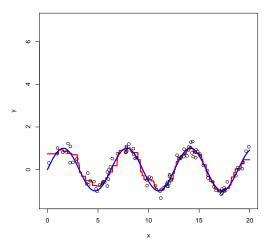


Robert Hable

University of Bayreuth

Qualitative Robustness – Non-Parametric Example

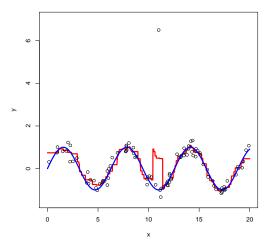
Regression: k-nearest neighbor



Robert Hable

Qualitative Robustness – Non-Parametric Example

Regression: k-nearest neighbor



Robert Hable

Observations: $Z_1, \ldots, Z_n \sim P_0$ i.i.d.

Statistical functional:

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

Goal: Estimation of $T(P_0)$ (the true P_0 is unknown)

Desirable properties of an estimator

$$S_n : \mathcal{Z}^n \to \mathcal{F}, \qquad (z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$$

are

► Consistency:
$$S_n \xrightarrow{P_0} T(P_0)$$
 for $n \to \infty$

Robustness

- \mathcal{P} a set of probability measures \mathcal{F} a metric space
- Dey & Ruymgaart (1999):
 - The statistical problem

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

is well-posed if T is continuous. That is:

if
$$P_n \stackrel{w}{\Longrightarrow} P_0$$
 then $\lim_{n \to \infty} T(P_n) = T(P_0)$

► The statistical problem is **ill-posed** if *T* is <u>not</u> continuous.

- \mathcal{P} a set of probability measures \mathcal{F} a metric space
- Dey & Ruymgaart (1999):
 - The statistical problem

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

is well-posed if T is continuous. That is:

if
$$P_n \stackrel{w}{\Longrightarrow} P_0$$
 then $\lim_{n \to \infty} T(P_n) = T(P_0)$

► The statistical problem is **ill-posed** if *T* is <u>not</u> continuous.

Parametric models : T is usually well-posed Non-parametric models : T is often ill-posed

- $\ensuremath{\mathcal{P}}$ a set of probability measures
- ${\mathcal F}\,$ a metric space

Reformulation of Cueva's generalization of Hampel's theorem:

Theorem: If the statistical problem

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

is ill-posed, then no estimator

$$S_n : \mathcal{Z}^n \to \mathcal{F}, \qquad (z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$$

can simultaneously be consistent and qualitatively robust.

Example: Density Estimation

 \mathcal{P} : the set of all probability measures P on $(\mathbb{R}^k, \mathbb{B}^k)$ with Lebesgue-density, denoted by

$$f_P$$
 : $\mathbb{R}^k \to [0,\infty)$.

Example: Density Estimation

 \mathcal{P} : the set of all probability measures P on $(\mathbb{R}^k, \mathbb{B}^k)$ with Lebesgue-density, denoted by

$$f_P$$
 : $\mathbb{R}^k \to [0,\infty)$.

Theorem: (Cuevas) The statistical functional

$$T: \mathcal{P} \rightarrow L_1(\mathbb{R}^k), P \mapsto f_P$$

is discontinuous at every $P \in \mathcal{P}$.

Example: Density Estimation

 \mathcal{P} : the set of all probability measures P on $(\mathbb{R}^k, \mathbb{B}^k)$ with Lebesgue-density, denoted by

$$f_P$$
 : $\mathbb{R}^k \to [0,\infty)$.

Theorem: (Cuevas) The statistical functional

$$T: \mathcal{P} \rightarrow L_1(\mathbb{R}^k), P \mapsto f_P$$

is discontinuous at every $P \in \mathcal{P}$.

Corollary: Let

$$X_1,\ldots,X_n \sim P$$
 i.i.d.

and let S_n , $n \in \mathbb{N}$, be a sequence of density-estimators which is (weakly) consistent for every $P \in \mathcal{P}$. Then, at every $P \in \mathcal{P}$, the estimator S_n , $n \in \mathbb{N}$, is not qualitatively robust.

What can be done: Idea 1

Use weaker properties:

consistency \rightsquigarrow risk-consistency robustness \rightsquigarrow risk-robustness

Regression/Classification: $(X_1, Y_1), \ldots, (X_n, Y_n) \sim P_0$ i.i.d.

Risk of a predictor
$$f$$
: $\mathcal{R}_{P_0}(f) = \int L(y, f(x)) P_0(d(x, y))$

consistency:

$$S_n \xrightarrow{P_0} T(P_0) \quad \text{for } n \to \infty$$

robustness:

small errors should not change the estimator too much

What can be done: Idea 1

Use weaker properties:

consistency \rightsquigarrow risk-consistency robustness \rightsquigarrow risk-robustness

Regression/Classification: $(X_1, Y_1), \ldots, (X_n, Y_n) \sim P_0$ i.i.d.

Risk of a predictor
$$f$$
: $\mathcal{R}_{P_0}(f) = \int L(y, f(x)) P_0(d(x, y))$

Risk-consistency:

$$\mathcal{R}_{P_0}(S_n) \xrightarrow{P_0} \mathcal{R}_{P_0}(T(P_0)) \quad \text{for } n \to \infty$$

robustness:

small errors should not change the estimator too much

What can be done: Idea 1

Use weaker properties:

consistency \rightsquigarrow risk-consistency robustness \rightsquigarrow risk-robustness

Regression/Classification: $(X_1, Y_1), \ldots, (X_n, Y_n) \sim P_0$ i.i.d.

Risk of a predictor
$$f$$
: $\mathcal{R}_{P_0}(f) = \int L(y, f(x)) P_0(d(x, y))$

Risk-consistency:

$$\mathcal{R}_{P_0}(S_n) \xrightarrow{P_0} \mathcal{R}_{P_0}(T(P_0)) \quad \text{for } n \to \infty$$

Risk-robustness:

small errors should not change the $\ensuremath{\mathsf{risk}}$ of the estimator too much

Robert Hable

Theorem: If the statistical problem

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

is ill-posed, then no estimator

$$S_n : \mathcal{Z}^n \rightarrow \mathcal{F}, \qquad (z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$$

can simultaneously be consistent and qualitatively robust.

III-Posed Statistical Problems

Theorem: If the statistical problem

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

is ill-posed, then no estimator

$$S_n$$
 : $\mathcal{Z}^n \rightarrow \mathcal{F}$, $(z_1, \ldots, z_n) \mapsto S_n(z_1, \ldots, z_n)$

can simultaneously be consistent and qualitatively robust.

Theorem (Regression): If the statistical regression problem

$$T : \mathcal{P} \to \mathcal{F}, \qquad P \mapsto T(P)$$

is ill-posed, then no estimator

$$S_n : ((x_1, y_1), \ldots, (x_n, y_n)) \mapsto S_n((x_1, y_1), \ldots, (x_n, y_n))$$

can simultaneously be risk-consistent and qualitatively risk-robust.

Qualitative Robustness: (Hampel ,1971)

A sequence of estimators $(S_n)_{n \in \mathbb{N}}$ is called qualitatively robust if

 $\forall P \ \forall \epsilon > 0 \ \exists \delta > 0$ such that $\forall Q$ with $d_{\mathsf{Pro}}(Q, P) < \delta$

$$\sup_{n\in\mathbb{N}} d_{\mathsf{Pro}}(S_n(Q^n),S_n(P^n)) < \varepsilon$$

Qualitative Robustness: (Hampel ,1971)

A sequence of estimators $(S_n)_{n\in\mathbb{N}}$ is called qualitatively robust if

 $\forall P \ \forall \epsilon > 0 \ \exists \delta > 0$ such that $\forall Q$ with $d_{\mathsf{Pro}}(Q, P) < \delta$

$$\sup_{n\in\mathbb{N}} d_{\operatorname{Pro}}(S_n(Q^n),S_n(P^n)) < \varepsilon$$

Finite Sample Qualitative Robustness:

A sequence of estimators $(S_n)_{n \in \mathbb{N}}$ is called qualitatively robust if

 $\forall P \ \forall \epsilon > 0 \ \forall n \in \mathbb{N} \ \exists \delta_n > 0 \text{ such that } \forall Q \text{ with } d_{\mathsf{Pro}}(Q, P) < \delta_n$

$$d_{\operatorname{Pro}}(S_n(Q^n),S_n(P^n)) < \varepsilon$$

Example: Nonparametric Regression

For example,

$$Y = f_0(X) + g(X)\varepsilon$$

with

- Y: output variable
- ► X : input variable
- ► *f*₀ : regression function (totally unknown)
- ε : error term
- g: heteroscedasticity (unknown)

Goal: Estimation of the unknown regression function f_0

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, P \quad \text{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \text{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, P \quad \text{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \text{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

L : $\mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$ L(y,t): loss caused by estimation $t = \hat{f}_n(x)$ if y is true

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, \mathcal{P} & \mbox{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \mbox{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

 $L : \mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$

L(y, t): loss caused by estimation $t = \hat{f}_n(x)$ if y is true \blacktriangleright Risk of an estimate $\hat{f}_n : \mathcal{X} \to \mathbb{R}$

$$\int L(y,\hat{f}_n(x)) P(d(x,y))$$

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, P \quad \text{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \text{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

 $L : \mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$

L(y,t): loss caused by estimation $t = \hat{f}_n(x)$ if y is true

• empirical Risk of an estimate $\hat{f}_n : \mathcal{X} \to \mathbb{R}$

$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,\hat{f}_n(x_i))$$

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, \mathcal{P} & \mbox{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \mbox{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

 $L : \mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$

L(y,t): loss caused by estimation $t = \hat{f}_n(x)$ if y is true

• empirical Risk of an estimate $\hat{f}_n : \mathcal{X} \to \mathbb{R}$

$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,\hat{f}_n(x_i))$$

▶ RKHS *H* (certain Hilbert space of functions $f : X \to \mathbb{R}$)

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, P & \mbox{i.i.d.}, & i \in \{1, \ldots, n\} \\ \mbox{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

 $L : \mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$

L(y, t): loss caused by estimation $t = \hat{f}_n(x)$ if y is true

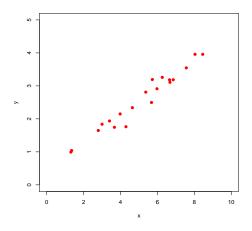
• empirical Risk of an estimate $\hat{f}_n : \mathcal{X} \to \mathbb{R}$

$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,\hat{f}_n(x_i))$$

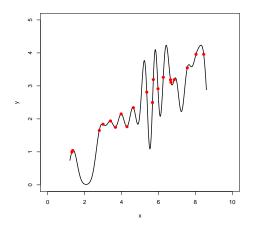
▶ RKHS *H* (certain Hilbert space of functions *f* : X → ℝ)
 ▶ Estimator

$$S_n((x_1, y_1), \dots, (x_n, y_n)) = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i))$$

Overfitting



Overfitting



 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, P \quad \text{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \text{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

$$L : \mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$$

L(y, t): loss caused by prediction t if y is the true value

• empirical Risk of an estimate $f : \mathcal{X} \to \mathbb{R}$

$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,f(x_i))$$

▶ RKHS *H* (certain Hilbert space of functions *f* : X → ℝ)
 ▶ Estimator

$$S_n((x_1, y_1), \dots, (x_n, y_n)) = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i))$$

 $\begin{array}{lll} Y_i &=& f_0(X_i) + g(X_i) \varepsilon_i \,, \qquad (X_i, Y_i) \,\sim\, \mathcal{P} & \mbox{i.i.d.}, \qquad i \in \{1, \ldots, n\} \\ \mbox{Goal: Estimation of } f_0 : \, \mathcal{X} \to \mathcal{Y} \subset \mathbb{R} \end{array}$

Loss function

$$L : \mathcal{Y} \times \mathbb{R} \rightarrow [0,\infty)$$

L(y, t): loss caused by prediction t if y is the true value

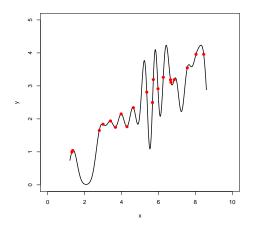
• empirical Risk of an estimate $f : \mathcal{X} \to \mathbb{R}$

$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,f(x_i))$$

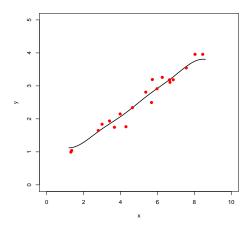
- ▶ RKHS *H* (certain Hilbert space of functions $f : X \to \mathbb{R}$)
- Regularized kernel methods

$$S_n((x_1, y_1), \dots, (x_n, y_n)) = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_H^2$$

Overfitting



Overfitting



Reproducing Kernel Hilbert Space (RKHS)

Regularized kernel methods

$$S_n : (\mathcal{X} \times \mathcal{Y})^n \longrightarrow H,$$

$$((x_1, y_1), \dots, (x_n, y_n)) \mapsto \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_H^2$$

with H a reproducing kernel Hilbert space (RKHS)

Reproducing Kernel Hilbert Space (RKHS)

Regularized kernel methods

$$S_n : (\mathcal{X} \times \mathcal{Y})^n \longrightarrow H,$$

$$((x_1, y_1), \dots, (x_n, y_n)) \mapsto \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_H^2$$

with H a reproducing kernel Hilbert space (RKHS)

Reproducing kernel Hilbert space *H*

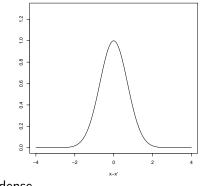
- a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$
- generated by a kernel function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- reproducing property

$$\langle f, k(x, \cdot) \rangle_{H} = f(x) \quad \forall x \in \mathcal{X}, \quad \forall f \in H$$

Example: Gaussian Kernel

Gaussian Kernel $\mathcal{X} = \mathbb{R}$

$$k : \mathbb{R} imes \mathbb{R} \to \mathbb{R}, \qquad (x, x') \mapsto \exp\left(-\frac{1}{\gamma^2}|x - x'|^2\right)$$

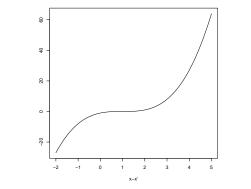


 $H \subset L_p(P)$ dense

Example: Polynomial Kernel

Polynomial Kernel $\mathcal{X} = \mathbb{R}$

$$k : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad (x, x') \mapsto (x \cdot x' + c)^m$$



 $H = \{f : \mathbb{R}
ightarrow \mathbb{R} \, \big| \, f \text{ a polynomial with degree } \leq m\} \cong \mathbb{R}^{m+1}$

Representer Theorem

How to calculate the estimator?

$$D_n = ((x_1, y_1), \ldots, (x_n, y_n))$$

Estimator

$$f_{D_{n,\lambda}} = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda ||f||_H^2$$

Representer Theorem

How to calculate the estimator?

$$D_n = ((x_1, y_1), \ldots, (x_n, y_n))$$

Estimator

$$f_{D_n,\lambda} = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_H^2$$

Representer Theorem

There are $\alpha_{D_n,1},\ldots,\alpha_{D_n,n}\in\mathbb{R}$ such that

$$f_{D_n,\lambda} = \sum_{i=1}^n \alpha_{D_n,i} k(x_i,\cdot) .$$

Representer Theorem

How to calculate the estimator?

$$D_n = ((x_1, y_1), \ldots, (x_n, y_n))$$

Estimator

$$f_{D_n,\lambda} = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_H^2$$

Representer Theorem

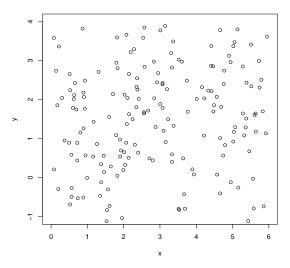
There are $\alpha_{D_n,1},\ldots,\alpha_{D_n,n}\in\mathbb{R}$ such that

$$f_{D_n,\lambda} = \sum_{i=1}^n \alpha_{D_n,i} k(x_i,\cdot) .$$

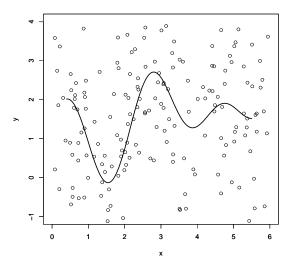
 $\longrightarrow~$ just solve a finite convex optimization problem

... and this really works?

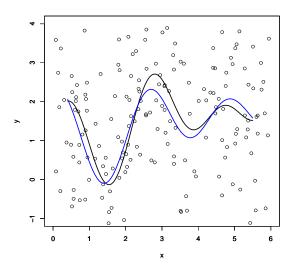
... and this really works? Yes, quite good.



... and this really works? Yes, quite good.



... and this really works? Yes, quite good.



Risk-Consistency

Risk of a predictor $f: \mathcal{X} \to \mathbb{R}$

$$\mathcal{R}_{P}(f) = \int L(y, f(x)) P(d(x, y)) \quad \hat{=} \quad \text{Quality of } f$$
$$\mathbf{D}_{n} = ((X_{1}, Y_{1}), \dots, (X_{n}, Y_{n}))$$

Estimator:

$$f_{\mathbf{D}_n,\lambda_n} = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(Y_i, f(X_i)) + \lambda_n \|f\|_H^2$$

Risk-Consistency

Risk of a predictor $f: \mathcal{X} \to \mathbb{R}$

$$\mathcal{R}_{P}(f) = \int L(y, f(x)) P(d(x, y)) \quad \hat{=} \quad \text{Quality of } f$$
$$= ((X_{1}, Y_{1}), \dots, (X_{n}, Y_{n}))$$

Estimator:

 \mathbf{D}_n

$$f_{\mathbf{D}_n,\lambda_n} = \arg \inf_{f \in H} \frac{1}{n} \sum_{i=1}^n L(Y_i, f(X_i)) + \lambda_n \|f\|_H^2$$

Risk-consistency

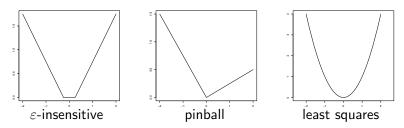
$$\mathcal{R}_{\mathcal{P}}(f_{\mathsf{D}_{n,\lambda_{n}}}) \xrightarrow[n \to \infty]{} \inf_{f:\mathcal{X} \to \mathbb{R}} \mathcal{R}_{\mathcal{P}}(f)$$
 in probability

essentially $\mathbf{i}\mathbf{f}$

- $H \subset L_p(P)$ dense (e.g. Gaussian kernel)
- $\lambda_n \rightarrow 0$ not too fast (!)

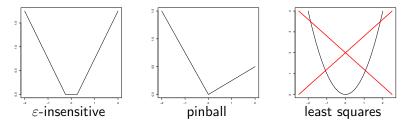
Robustness

Loss function L



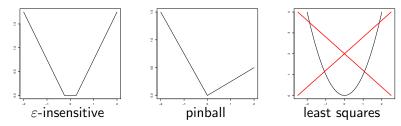
Robustness

Loss function L should be Lipschitz continuous



Robustness

Loss function L should be Lipschitz continuous



Then: Regularized jernel methods are

either risk-consistent

for $\lambda_n \searrow 0$

or qualitatively robust

for
$$\lambda_n \searrow \lambda_0 > 0$$

But: always finite sample qualitatively robust Hable & Christmann (2011)

Goal: estimate a solution $f^*: \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_P(f) = \min! \quad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H}\mathcal{R}_P(f) = \min! \qquad f\in H.$$

Goal: estimate a solution $f^* : \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_P(f) = \min! \quad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H} \mathcal{R}_P(f) = \min! \qquad f\in H.$$

However, these optimization problems are ill-posed:

- either qualitatively robust or consistent
- there is no uniform rate of convergence to the solution (without substantial assumptions on P)

Goal: estimate a solution $f^*: \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_P(f) = \min! \quad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H} \mathcal{R}_P(f) = \min! \qquad f\in H.$$

However, these optimization problems are ill-posed:

- either qualitatively robust or consistent
- there is no uniform rate of convergence to the solution (without substantial assumptions on P)
- statistical inference is impossible

Rates of Convergence

Risk-consistency

$$\mathcal{R}_{P}(f_{\mathbf{D}_{n},\lambda_{n}}) \xrightarrow[n \to \infty]{} \inf_{f:\mathcal{X} \to \mathbb{R}} \mathcal{R}_{P}(f) \quad \text{ in probability}$$

Rates of Convergence

Risk-consistency

$$\mathcal{R}_{P}(f_{\mathbf{D}_{n},\lambda_{n}}) \xrightarrow[n \to \infty]{} \inf_{f:\mathcal{X} \to \mathbb{R}} \mathcal{R}_{P}(f) \quad \text{ in probability}$$

How fast is this convergence?

Is there a uniform rate r_n such that

$$r_n\Big(\mathcal{R}_P(f_{\mathbf{D}_n,\lambda_n}) - \inf_{f:\mathcal{X}\to\mathbb{R}}\mathcal{R}_P(f)\Big) \xrightarrow[n\to\infty]{} 0$$
 in probability

for every P?

Rates of Convergence

Risk-consistency

$$\mathcal{R}_{P}(f_{\mathbf{D}_{n},\lambda_{n}}) \xrightarrow[n \to \infty]{} \inf_{f:\mathcal{X} \to \mathbb{R}} \mathcal{R}_{P}(f) \quad \text{ in probability}$$

How fast is this convergence?

Is there a uniform rate r_n such that

$$r_n \Big(\mathcal{R}_P(f_{\mathbf{D}_n,\lambda_n}) - \inf_{f:\mathcal{X}\to\mathbb{R}} \mathcal{R}_P(f) \Big) \xrightarrow[n\to\infty]{} 0 \text{ in probability}$$

for every $P? \longrightarrow \mathbf{No!}$ (no-free-lunch theorem)

Robert Hable

Rates of Convergence

Risk-consistency

$$\mathcal{R}_{P}(f_{\mathbf{D}_{n},\lambda_{n}}) \xrightarrow[n \to \infty]{} \inf_{f:\mathcal{X} \to \mathbb{R}} \mathcal{R}_{P}(f) \quad \text{ in probability}$$

How fast is this convergence?

Is there a uniform rate r_n such that

$$r_n\Big(\mathcal{R}_P(f_{\mathbf{D}_n,\lambda_n}) - \inf_{f:\mathcal{X} \to \mathbb{R}} \mathcal{R}_P(f)\Big) \xrightarrow[n \to \infty]{} 0$$
 in probability

for every $P? \longrightarrow No!$ (no-free-lunch theorem)

Instead,

rates r_n of convergence under assumptions on P

e.g. Steinwart and Scovel (2007), Caponnetto and De Vito (2007), Blanchard et al. (2008), Steinwart et al. (2009), Mendelson and Neeman (2010)

Goal: estimate a solution $f^* : \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_P(f) = \min! \quad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H}\mathcal{R}_P(f) = \min! \qquad f\in H.$$

Goal: estimate a solution $f^* : \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_{P}(f) = \min! \qquad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H}\mathcal{R}_P(f) = \min! \qquad f\in H.$$

However, these optimization problems are ill-posed:

- either qualitatively robust or consistent
- there is no uniform rate of convergence to the solution (without substantial assumptions on P)
- statistical inference is impossible

Goal: estimate a solution $f^* : \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_{P}(f) = \min! \qquad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H}\mathcal{R}_P(f) = \min! \qquad f\in H.$$

However, these optimization problems are ill-posed:

- either qualitatively robust or consistent
- there is no uniform rate of convergence to the solution (without substantial assumptions on P)
- statistical inference is impossible

Idea 3: Do not try to solve ill-posed problems; pose them well!

Goal: estimate a solution $f^* : \mathcal{X} \to \mathbb{R}$ of

$$\mathcal{R}_{P}(f) = \min! \qquad f: \mathcal{X} \to \mathbb{R}$$

or

$$\inf_{f\in H}\mathcal{R}_P(f) = \min! \qquad f\in H.$$

However, these optimization problems are ill-posed:

- either qualitatively robust or consistent
- there is no uniform rate of convergence to the solution (without substantial assumptions on P)
- statistical inference is impossible

Idea 3: *Do not try to solve ill-posed problems; pose them well!* **So**, consider the regularized problem

$$\mathcal{R}_P(f) + \lambda_0 \|f\|_H^2 = \min! \qquad f \in H.$$

Smooth Approximation of the Regression Function

• Instead of estimating a solution $f^*: \mathcal{X} \to \mathbb{R}$ of

 $\mathcal{R}_P(f) = \min! \quad f: \mathcal{X} \to \mathbb{R}$

we may estimate the solution f_{P,λ_0} of the regularized problem

 $\mathcal{R}_P(f) + \lambda_0 \|f\|_H^2 = \min! \qquad f \in H.$

 f_{P,λ_0} serves as a "smoother approximation" of f^* .

Smooth Approximation of the Regression Function

▶ Instead of estimating a solution $f^*: \mathcal{X} \to \mathbb{R}$ of

 $\mathcal{R}_P(f) = \min! \quad f: \mathcal{X} \to \mathbb{R}$

we may estimate the solution f_{P,λ_0} of the regularized problem

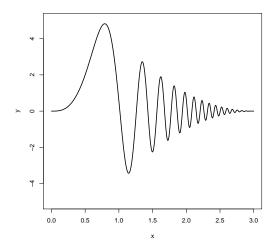
 $\mathcal{R}_P(f) + \lambda_0 \|f\|_H^2 = \min! \qquad f \in H.$

 f_{P,λ_0} serves as a "smoother approximation" of f^* .

The regularized problem is equivalent to

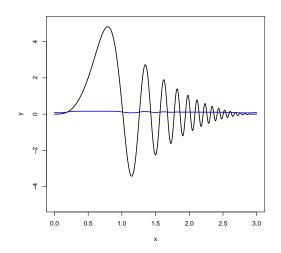
 $\mathcal{R}_P(f) = \min!$ $f \in H$, $||f||_H \le r_0$.

r₀: bound on complexity of "smoother approximation"

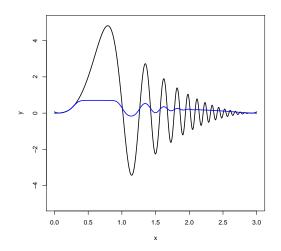


Robert Hable

 $\lambda = 1$

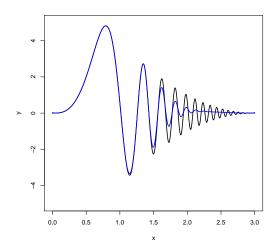


 $\lambda = 0.1$



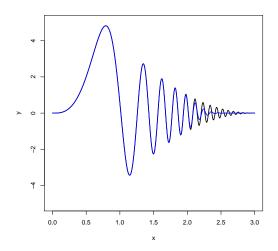
Robert Hable

 $\lambda = 0.01$



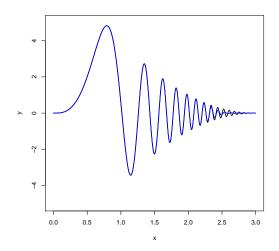
Robert Hable

 $\lambda = 0.001$

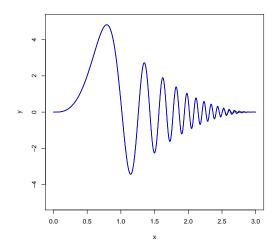


Robert Hable

 $\lambda = 0.0001$

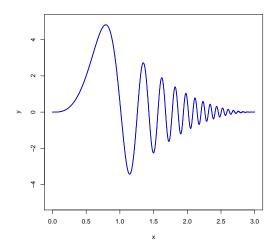


 $\lambda = 0.00001$



Robert Hable

 $\lambda = 0.000001$



Robert Hable

Asymptotic Normality of Regularized Problem

Under some

▶ assumptions on \mathcal{X} , L, k (\leftrightarrow H), and $\lambda_{\mathbf{D}_n} \xrightarrow[n \to \infty]{} \lambda_0$

but (essentially) no assumptions on P,

we have

$$\sqrt{n}\Big(\mathcal{R}(f_{\mathbf{D}_n,\lambda_{\mathbf{D}_n}})-\mathcal{R}(f_{P,\lambda_0})\Big) \quad \rightsquigarrow \quad \mathcal{N}(0,\sigma^2)$$

and, even more,

$$\sqrt{n} (f_{\mathbf{D}_n, \lambda_{\mathbf{D}_n}} - f_{P, \lambda_0}) ~~ \diamond$$
 Gaussian process in H

References

- A. Cuevas (1988): Qualitative robustness in abstract inference. Journal of Statistical Planning and Inference, 18:277–289.
- A.K. Dey and F.H. Ruymgaart (1999): Direct density estimation as an ill-posed inverse estimation problem. *Statistica Neerlandica*, 53(3): 309–326.
- ▶ Hable, R., Christmann, A. (2011): On qualitative robustness of support vector machines. *Journal of Multivariate Analysis*, 102:993-1007, 2011.
- ▶ Hable, R. (2012): Asymptotic normality of support vector machine variants and other regularized kernel methods. *Journal of Multivariate Analysis*, 106:92-117.
- Hable, R. (2012): Asymptotic confidence sets for support vector machine variants and other regularized kernel methods. Submitted.
- ▶ F.R. Hampel (1971): A general qualitative definition of robustness. Annals of Mathematical Statistics, 42:1887–1896.