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Regression models for failure time data in the presence of competing risks

Event time analysis

Basic concepts

Introduction

Primary interest: Time to event

Problem: Event of interest not observed for all individuals
→ censored observations (end of study, loss to follow-up)

Special methods for the analysis of event time data

Observed: Pair (T ∗i , di ) with

T
∗
i = min(Ti ,Ci )

di = I (Ti < Ci )

Ti = event time

Ci = censoring time

T ∗i = observed time

di = status (0 = censored, 1 = event)
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Regression models for failure time data in the presence of competing risks

Event time analysis

Relevant measures

Relevant measures

Density function: f (t)

Survivor function: S(t) = P(T > t) =

∞∫
t

f (s)ds

Hazard function: λ(t) = lim
∆t→0

P(t ≤ T < t + ∆t|T ≥ t)

∆t

S(t) = exp
(
−

t∫
0

λ(s)ds
)

= exp
(
− Λ(t)

)
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Regression models for failure time data in the presence of competing risks

Event time analysis

Relevant measures

Event-time analysis

Kaplan-Meier estimator:

Ŝ(t) =
∏
i :ti≤t

(1− di

ni
)

Cox regression:
λ(t) = λ0(t)exp(X>β)
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Basic concepts

Competing Risks

Two or more mutually exclusive types of event
Not all standard methods for event-time analysis are appropriate
Di�erent approaches for analysis of competing risks data proposed
Observed:

T
∗
i = min{T1,T2, ...,TK ,C}

di : Indicator for type of event (di ∈ {1, ...,K}) or censoring (di = 0)
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Basic concepts

�A nonidenti�ability aspect of the problem of competing risks�

Tsiatis (1975):

Problem: Only time to �rst event can be observed

Correlation structure between times to di�erent events cannot be
assessed

For each set of marginal distributions joint distributions with
di�erent correlation structures can be found

Only under the assumption of independence marginal distributions
do uniquely de�ne the joint distribution

Assumption of independence cannot be tested from observed data
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Basic concepts

Motivation

Koller et al. (Statistics in Medicine, 2011):
Competing risks and the clinical community:

irrelevance or ignorance?

Analysis of research articles from 2000 - 2010 from leading medical
and biostatistical journals with a special focus on the last 50
publications relevant for competing risks analyses

�Large developments in competing risks methodology have been

achieved over the last decades, but we assume that recognition of

competing risks in the clinical community is still marginal.�

Results:
Competing risks ...

... were often discussed in statistical journals.

... were present in many studies.

... were not considered or not analysed adequately in most of the
studies investigated (n=50).

Conclusion:
�A better recognition of competing risks in the clinical community is

needed.�
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Basic concepts

Kaplan-Meier method in the presence of competing risks

�Naïve� Kaplan-Meier estimator is applied to competing risks data

Competing events are treated as censored observations

A major assumption (independence between event and censoring
times) of the Kaplan-Meier estimator is violated

Example: Patients with non-small cell lung cancer (NSCLC)
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S(t) = 1−

∫ t

0

f (s)ds = 1−
∫ t

0

λ(s)S(s)ds = 1−
∫ t

0

λ(s)exp
(
− Λ(s)

)
ds
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Cause-speci�c hazard

Cause-speci�c hazard rate:

λk(t) = lim
∆t→0

P(t ≤ T < t + ∆t,D = k|T ≥ t)

∆t

Cumulative cause-speci�c hazard rate:

Λk(t) =

∫ t

0

λk(s)ds

Estimating λk :

λ̂k(ti ) = dki
ni

ni : Number of subjects under risk (no event until ti , still under observation)

dki : Number of events of type k at time ti
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Cumulative incidence function

Cumulative incidence function:

Fk(t) = P(T ≤ t,D = k) =

∫ t

0

λk(s)S(s−)ds

�Naïve� Kaplan-Meier estimator vs. cumulative incidence function:

1− Sk(t) =

∫ t

0

λk(s)exp
(
− Λk(s)

)
ds

≥
∫ t

0

λk(s)exp
(
−

K∑
j=1

Λj(s)
)
ds = Fk(t)
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

�Naïve� Kaplan-Meier estimator vs. cumulative incidence function
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Relationship between λk(t) and Fk(t)

Cause-speci�c hazard:

λk(t) = lim
∆t→0

P(t ≤ T < t + ∆t,D = k|T ≥ t)

∆t

Cumulative incidence function:

Fk(t) =

∫ t

0

λk(s)exp
(
−

K∑
j=1

Λj(s)
)
ds

Fk(t) depends on all λj , j = {1, ...,K}

→ no direct link between λk(t) and Fk(t)
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Risk and incidence - an example

Illustration from Putter et al. (Statistics in Medicine, 2007):

 

SI: Syncytium inducing HIV phenotype
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Risk and incidence - graphical illustration

Similar situation - simulated data:
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Subdistribution hazard

Subdistribution hazard (Fine and Gray, 1999):

λ∗k(t) = lim
∆t→0

P(t ≤ T < t + ∆t,D = k|T ≥ t ∪ {T < t,D 6= k})
∆t

Subjects failing from a competing event remain in the risk set

Estimation of λ
∗(1)
k

λ̂∗k(ti ) = dik
n∗
i

n∗
i : Number of subjects at risk at time ti
(no event before ti OR an event 6= k before ti )

dki : Number of events of type k at time ti

Fk(t) = 1− exp
(
−
∫ t

0

λ∗k(s)ds
)

= 1− exp
(
− Λ∗k(t)

)
(1) For the case that no or just administrative censoring is present. In the case that
individuals are lost to follow-up, a censoring distribution is estimated from the data.
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Illustration of di�erent hazard rates
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Illustration of di�erent hazard rates

NSCLC patients: Cause-speci�c and subdistribution hazard for
tumour-related death

0.0

0.2

0.4

0.6

0.8

1.0

Time in months

Cause−specific

Subdistribution

0 12 24 36 48 60

C
um

ul
at

iv
e 

H
az

ar
d

20 / 57



Regression models for failure time data in the presence of competing risks

An introduction to competing risks

Relevant measures

Risk and incidence - graphical illustration

Situation described above - simulated data:
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Regression models for failure time data in the presence of competing risks

An introduction to competing risks

k-sample tests

k-sample tests

Logrank test: Compares cause-speci�c hazard rates

Gray's k-samples test: Compares subdistribution hazard rates

Methods for comparison of cumulative incidence functions:

Pepe's Test (integrated weighted di�erence between two cumulative
incidence functions)
Lin's Test (Kolmogorov-Smirnov-type test - compares maximum
di�erence between two cumulative incidence functions)
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Cause-speci�c hazard regression

Prentice et al. (1978):

λk(t) as dependent variable

Prentice et al. proposed Cox-type regression

λk(t|X) = λk,0(t)exp(β>k X)

Competing events are treated as censored observations

Assumptions and extension as known from classical Cox regression

Can be performed using standard software
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Cause-speci�c hazard regression

Cumulative incidences depend on covariate e�ects on all event types

Two possible types of event:

F1(t | X ) =

∫ t

0

λ1(s | X )exp
(
−
(
Λ1(s | X ) + Λ2(s | X )

))
ds

�Naïve� calculation of event probabilities gives biased estimates

No direct link between regression coe�cients and cumulative
incidence function
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Cause-speci�c hazard ratios and cumulative incidences

Incidences depend on the e�ects on all types of event

→ Simulations (n=10 000); HR: Group B
Group A

exp(β̂cs1 ) = 1.93 exp(β̂cs1 ) = 0.97 exp(β̂cs1 ) = 1.96
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Subdistribution hazard regression (Fine&Gray-Model)

Fine and Gray (1999):

Cox-type regression on the subdistribution hazard proposed

λ∗k(t|X) = λ∗k,0(t)exp(β∗>k X)

Individuals failing from a competing event remain in the risk set

Assumptions known from standard models are translated to
subdistribution hazards (e.g. proportionality)

Implemented in the R library cmprsk

Direct link between regression coe�cients and cumulative incidence:

Fk(t|X) = 1− exp
(
−
∫ t

0

λ∗0k(s)exp(β∗>k X)ds
)

= 1− exp
(
− Λ∗k(t|X)

)
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Cause-speci�c and subdistribution hazard ratios

SDH-models misspeci�ed: Can be interpreted as summary analysis

exp(β̂cs1 ) = 1.93 exp(β̂cs1 ) = 0.97 exp(β̂cs1 ) = 1.96

exp(β̂sd1 ) = 0.70 exp(β̂sd1 ) = 1.59 exp(β̂sd1 ) = 1.86
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Mixture models

Larson and Dinse (1985):

Joint distribution of event time and type of event as product of
conditional and marginal distribution

P(D,T) = P(T|D)P(D)
Logistic regression model to estimate covariate e�ects on the
probability of an event of interest

Separate estimation of event time distributions for given event type

Proposed conditional distributions for event times:

- piecewise exponential distribution (Larson and Dinse, 1985)
- generalized gamma distribution (Lau et al, 2008)

Likelihood contribution of subject i:

Li = [πi f1(ti )]
I (di =1)×[(1−πi )f2(ti )]I (di =2)×[πiS1(ti )+(1−πi )S2(ti )]I (di =0)

Likelihood has to be maximized
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Mixture models

Alternative model for survival times:

Semi-parametric estimation (Ng and McLachlan (2003), Escarela
and Bowater (2008))

No speci�cation for survival time distribution for given type of event

Hazard rates for given event type are assumed to be proportional

Estimation via EM algorithm

Standard errors via bootstrap samples

Computationally very intensive
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Vertical Modelling

Nicolaie et al. (2009)

Joint distribution of event time and type of event as product of
conditional and marginal distribution

P(D,T)=P(D|T)P(T)
Marginal distribution for event times (e.g. parametric model)

Conditional event probabilities for given event times
→ e.g. multinomial logistic regression including time as covariate

Only individuals with an observed event can be used for estimation
of �relative hazards�

Regression coe�cients hard to interpret
→ graphical presentation
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Vertical Modelling

Nicolaie et al. (Statistics in Medicine, 2009)

Data: 8966 leukaemia patients from the European Group for Blood
and Marrow Transplantation
Proportion of events in pre-speci�ed time intervals or B-Splines to
estimate �relative hazards� over time
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Event time analysis based on pseudo observations

Andersen, Klein et al. (2003, 2005)

Calculate H pseudo-observations for each individual i

Leave-one-out estimates F̂
(i)
k (τh) for the cumulative incidence

function (Jackknife) at pre-speci�ed time points τ = (τ1, ..., τH)

→ calculation of pseudo-observations

θ̂ih = nF̂k(τh)− (n − 1)F̂
(i)
k (τh)

Notation:

- τ : vector of pre-speci�ed time points
- F̂k(τh): estimated cumulative incidence function for event k from all
observations at time τh

- F̂
(i)
k
(τh): estimated cumulative incidence function for event k at time

τh leaving out subject i

If no censoring is present:

nF̂k(τh) = number of events of interest until time τh
θ̂ih is an indicator function I (Ti ≤ τh, di = k).
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Regression approaches

Event time analysis based on pseudo observations

Estimation of covariate e�ects on the pseudo-observations using a
GEE model with complementary log-log (clogclog) link

−log
(
− log(1− θih)

)
= αh + β>Xih

exp(β) can be interpreted as subdistribution hazard ratio

Simulation studies: large standard errors for regression coe�cients

→ Recommendation (Pohar Perme and Andersen, 2008):

- Do not use the method for proportional subdistribution hazard
regression, since more e�cient estimators are available

- Pseudo observations can be useful for more complex models
- Use pseudo observations to check model assumptions

34 / 57



Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Example

Bauer et al. (2009)

Observation of 2341 patients after myocardial infarction

Within 5 years 181 patients died

- Cardiac deaths: n=104
- Other types of death: n=77

Aim: To establish a risk score for cardiac death

Diabetes (yes/no) and age (<65/≥ 65) as further covariates

Application of presented methods for competing risk regression
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Cumulative incidence function
Incidences �ve years after myocardial infarction :

Cardiac death Non-cardiac death

F̂card .(5 years) 95% ci F̂non-card .(5 years) 95% ci

Overall 5.1% 4.2% to 6.1% 4.1% 3.1% to 5.0%
Low risk 2.7% 1.9% to 3.4% 3.3% 2.4% to 4.2%
High risk 27.5% 21.1% to 33.9% 10.9% 6.3% to 15.7%
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Cause-speci�c hazard regression

library(survival)
coxph(Surv(ev.time,ev.type==1)~group + diabetes + age,data=dat)
coxph(Surv(ev.time,ev.type==2)~group + diabetes + age,data=dat)

Cardiac death
^β exp(β̂) Std. error p-value

Risk group 2.36 10.53 0.20 <0.001
Diabetes 0.72 2.06 0.21 0.001
Age≥65 0.48 1.60 0.20 0.016

Non-cardiac death
^β exp(β̂) Std. error p-value

Risk Group 1.06 2.89 0.26 <0.001
Diabetes 0.70 2.01 0.25 0.005
Age≥65 1.28 3.69 0.24 <0.001
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Sudistribution hazard regression (Fine&Gray-Model)

library(cmprsk)

summary(crr(dat$ev.time,dat$ev.type,
cbind(dat$group,dat$diabetes,dat$age),failcode=1,cencode=0))

summary(crr(dat$ev.time,dat$ev.type,
cbind(dat$group,dat$diabetes,dat$age),failcode=2,cencode=0))

Cardiac death
^β exp(β̂) Std. error p-value

Risk group 2.32 10.21 0.20 <0.001
Diabetes 0.68 1.98 0.21 0.001
Age≥65 0.47 1.60 0.20 0.017

Non-cardiac death
^β exp(β̂) Std. error p-value

Risk Group 0.84 2.31 0.28 0.002
Diabetes 0.62 1.85 0.24 0.011
Age≥65 1.28 3.58 0.25 <0.001
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Mixture model

P(D,T|X) = P(T|D,X)P(D|X)
Semi-parametric approach proposed by Ng and McLachlan (2003)

No distribution assumption for survival times given type of event

Hazard rates are assumed to be proportional

Parameter estimation via EM algorithm

E-step: Determine expected failure type for censored observations
given the observed data and current parameter estimates
M-step: Maximize the log-likelihood given the observed data and the
expected failure types for censored observations

Estimation of standard errors using 500 bootstrap samples
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Mixture model results

Higher probability of cardiac death for high risk patients

Increased risk for both types of events for high risk patients

Event types Event times

Cardiac Cardiac Non-cardiac

^β 95% ci ^β 95% ci ^β 95% ci

Constant -2.30 -3.92 to 1.65 � � � �
Risk group 2.22 -1.44 to 3.97 0.88 -0.92 to 3.19 1.76 -0.21 to 2.76
Diabetes -0.43 -2.00 to 1.82 1.17 -0.44 to 2.02 0.52 -0.49 to 2.07
Age ≥ 65 0.96 -1.45 to 2.66 -0.25 -1.60 to 1.02 1.54 0.71 to 2.54
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Vertical modelling

P(D=1|T,X) → Logistic regression

Smooth in�uence of time (B-Spline)

Interaction between time and group

Only patients with observed event considered
glm(ev.type==1~bs(ev.time,degree=3) * group + diabetes + age,

family=binomial(link="logit"),data=dd)

^β Std. error p-value

Constant 0.75 0.61 0.218
Risk group 1.27 0.91 0.165
Diabetes -0.08 0.36 0.825
Age ≥ 65 -0.65 0.34 0.053
bs1(time) -0.76 1.96 0.698
bs2(time) -1.37 1.69 0.419
bs3(time) -0.69 1.14 0.545

bs1(time)×risk group 1.08 3.25 0.740
bs2(time)×risk group -0.64 2.56 0.802
bs3(time)×risk group -0.46 1.82 0.800

bs: B-Spline components

bs.(time)× Risk group: Interaction terms
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Regression models for failure time data in the presence of competing risks

Competing risks regression

Data application

Vertical modelling - graphical presentation

left: Survivor function adjusted for age and diabetes

middle, right: Estimated relative hazards for events types given
event time
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Competing risks regression

Data application

Pseudo observations

Estimation of cumulative incidence for all data

Jackknife estimates (n-1 obs.) for cumulative incidence

τ = {0, 3, 6, 9, 12, 15, ..., 57, 60} months

→ 2341 × 21 leave-one-out estimates F̂
(i)
card.

Pseudo observations:

θ̂ih = nF̂card.(τh)− (n − 1)F̂
(i)
card.(τh)

times <- seq(0,5,by=0.25)
CUM <- timepoints(cuminc(dat$ev.time,dat$ev.type),times)$est[1,]

CUM_i <- matrix(nrow=dim(dat),ncol=length(times))

for(i in 1:dim(dat)[1])
{
Cuminc <- timepoints(cuminc(dat$ev.time[-i],dat$ev.type[-i]),times)
CUM_i[i,] <- Cuminc$est[1,]
}
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Competing risks regression

Data application

Examples for pseudo observations
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Estimation of covariate e�ects:

Pseudo observations as dependent variable

GEE model with cloglog-link

library(geepack)
fit < − geese(pseudo ~factor(time) + group + diab + alter, id=id,

data=na.omit(Dlong), scale.fix=T, family=gaussian,
mean.link="cloglog",corstr="independence")
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Competing risks regression

Data application

Pseudo observations - results

^β exp(β̂) Std. error p-value

Constant -6.81 0.00 0.35 <0.001
Risk group 2.36 10.59 0.22 <0.001
Diabetes 0.81 2.25 0.25 0.001
Age ≥ 65 0.53 1.70 0.26 0.043

Time = 3 months 1.04 2.83 0.30 <0.001
Time = 6 months 1.21 3.35 0.26 <0.001

. . . . .

. . . . .

. . . . .
Time = 60 months 2.74 15.49 0.18 <0.001

exp(2.36) = 10.59 → can be interpreted as subdistribution HR

Similar to Fine&Gray regression

F&G: HRsd

k=1 = 10.21
F&G: Smaller standard errors
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Competing risks regression

Data application

Discussion of regression approaches

Cause-speci�c and subdistribution hazard regression mainly used

- Similar to standard analysis
- Available in standard software
- Di�erent measures used as dependent variable

→ Di�erent assumptions
→ Di�erent interpretation
→ May give di�erent results
→ Be aware of relationships and limitations

Mixture model and vertical modelling useful for data exploration

- Many coe�cients → hard to interpret
- No standard software available
- Computationally intensive

Model to be used for hypothesis testing?
- Depending on research question

→ E�ects on risk: Cause-speci�c hazard regression
→ E�ects on incidence: Subdistribution hazard regression

- Specify model for primary analysis a priori
- Consider covariate e�ects on all event types (graphical presentation)
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Outlook

Outline

1 Event time analysis
Basic concepts
Relevant measures

2 An introduction to competing risks
Basic concepts
Relevant measures
k-sample tests

3 Competing risks regression
Regression approaches
Data application

4 Outlook
Simulation
Research questions
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Outlook

Simulation

Simulation

Simulation is based on cause-speci�c hazard rates

Beyersmann et al. (Statistics in Medicine, 2009):
Simulating competing risks data in survival analysis

Cause-speci�c hazard rates �completely determine the competing

risks process�

Evaluation of methods using cause-speci�c hazards possible

Methods using subdistribution hazard / cumulative incidence
functions: ?
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Outlook

Simulation

Simulation - cause-speci�c hazard (k=2)

1 Choose baseline hazards λ0;1(t) and λ0;2(t) for both types of event

2 Specify cause-speci�c regression coe�cients β1 and β2

3 Generate the matrix of covariates X from a multivariate distribution

4 Simulate event times based on individual overall hazards
λi (t | Xi ) = λ0;1(t)exp(X>i β1) + λ0;2(t)exp(X>i β2)

5 Determine the type of event for each individual by drawing a random
number with probabilities

P(Di = 1 | Xi ) = λ1,i (Ti | Xi )/
(
λ1,i (Ti | Xi ) + λ2,i (Ti | Xi )

)
P(Di = 2 | Xi ) = λ2,i (Ti | Xi )/

(
λ1,i (Ti | Xi ) + λ2,i (Ti | Xi )

)
6 Generate independent censoring times
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Outlook

Simulation

Simulation - subdistribution hazard

Aim: To evaluate methods using the subdistribution hazard

Problem: Simulation of event times for given β∗1
Possible solution: Use the relationship:

exp
(
β1(t)

)
=

1 + F2(t|X=1)
S(t|X=1)

1 + F2(t|X=0)
S(t|X=0)

× exp
(
β∗1 (t)

)
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Outlook

Simulation

Proposal for k=2, binary covariate

Choose covariate e�ects on the subdistribution hazard β∗1
Specify λ0;1(t), λ0;2(t) and β2(t)

Determine β1(t) for all t

Generate event times following an algorithm for time-varying
covariate e�ects
→ Binomial algorithm by Sylvestre and Abrahamowicz (2007)
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Outlook

Simulation

Example for data following a proportional sdh model

Aim: Generate event times for two groups with a HRsd
k=1 = 2.

Constant baseline hazards

Constant HRcs
k=2

How to choose βcsk=1(t)?

0 200 400 600 800

−4

−3

−2

−1

0

Time

β(
t)

Type of event

k=1
k=2
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Outlook

Simulation

Example for data following a proportional sdh model
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HRcs
k=1 is time-dependent

HRsd
k=1 is constant over time: exp(βsdk=1) = 2
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Outlook

Simulation

Example II

Aim: HRsd
k=1 = 0
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Outlook

Research questions

Research questions

Choice of adequate measures for speci�c research questions

When do cause-speci�c and subdistribution hazard regression give
similar / di�erent results?

Identi�cation of important covariates and high risk groups using
di�erent regression approaches

Assessment of predictive accuracy and goodness of �t

Small sample properties of proposed models
→ alternatives for small sample studies
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Outlook

Research questions
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