Three contrasts between two senses of *coherence* Teddy Seidenfeld

Joint work with M.J.Schervish and J.B.Kadane – Statistics, CMU

Call an agent's choices *coherent* when they respect *simple dominance* relative to a (finite) partition.

 $Ω = {ω_1, ..., ω_n}$ is a finite partition of the sure event: a set of *states*. Consider two acts A_1, A_2 defined by the their outcomes relative to Ω.

	ω_1	ω_2	ω ₃	• • •	ω_n
A_1	<i>0</i> ₁₁	<i>o</i> ₁₂	<i>0</i> ₁₃	•••	o_{1n}
A_2	<i>0</i> ₂₁	<i>0</i> ₂₂	<i>0</i> ₂₃	•••	<i>0</i> _{2<i>n</i>}

Suppose the agent can compare the desirability of different outcomes at least within each state, and, for each state ω_j , outcome o_{2j} is (strictly) preferred to outcome o_{1j} , j = 1, ..., n. Then A_2 <u>simply dominates</u> A_1 with respect to Ω .

• *Coherence*: When A_2 simply dominates A_1 in some finite partition, then A_1 is inadmissible in any choice problem where A_2 is feasible.

Background on de Finetti's two senses of *coherence*

De Finetti (1937, 1974) developed two senses of *coherence* (*coherence*₁ and *coherence*₂), which he extended also to infinite partitions.

Let $\Omega = {\omega_1, ..., \omega_n, ...}$ be a countable partition of the sure event: a finite or denumerably infinite set of *states*.

Let $\chi = \{X_i: \Omega \rightarrow \Re; i = 1, ...\}$ be a countable class of (bounded) real-valued random variables defined on Ω .

That is, $X_i(\omega_j) = r_{ij}$ and for each $X \in \chi$, $-\infty < inf_{\Omega}X(\omega) \le sup_{\Omega}X(\omega) < \infty$.

Consider random variables as acts, with their associated outcomes.

	ω_1	ω_2	ω ₃	•••	ω_n	•••
X_1	<i>r</i> ₁₁	<i>r</i> ₁₂	<i>r</i> ₁₃	•••	r_{1n}	•••
X_2	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂₃	•••	r_{2n}	•••
• •	• •	•	•	• •	• •	• •
X_i	r_{i1}	<i>r</i> _{<i>i</i>2}	<i>r</i> _{<i>i</i>3}	•••	r _{in}	•••
• •	• •	:	:	•	•	•

*Coherence*₁: de Finetti's (1937) the 0-sum *Prevision Game* – wagering.

The players in the *Prevision Game*:

- The *Bookie* who, for each random variable X in χ announces a *prevision* (a *fair price*), *P(X)*, for buying/selling units of X.
- The *Gambler* who may make finitely many (non-trivial) contracts with the *Bookie* at the *Bookie*'s announced prices.

For an individual contract, the *Gambler* fixes a real number α_X , which determines the contract on *X*, as follows.

In state ω , the contract has an *outcome* to the *Bookie* (and opposite outcome to the *Gambler*) of $\alpha_X[X(\omega) - P(X)] = O_{\omega}(X, P(X), \alpha_X)$.

When $\alpha_X > 0$, the *Bookie* buys α_X -many units of *X* from the *Gambler*. When $\alpha_X < 0$, the *Bookie* sells α_X -many units of *X* to the *Gambler*.

The *Gambler* may choose finitely many non-zero ($\alpha_X \neq 0$) contracts.

The *Bookie*'s net *outcome* in state ω is the sum of the payoffs from the finitely many non-zero contracts: $\sum_{X \in X} O_{\omega}(X, P(X), \alpha_X) = O(\omega)$.

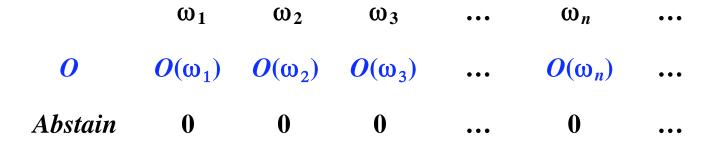
*Coherence*₁: The *Bookie*'s previsions { $P(X): X \in \chi$ } are *coherent*₁ provided that there is no strategy for the *Gambler* that results in a sure (uniform) net loss for the *Bookie*.

 $\neg \exists (\{\alpha_{X1},...,\alpha_{Xk}\}, \varepsilon > 0), \forall \omega \in \Omega \sum_{X \in \mathcal{X}} O_{\omega}(X, P(X), \alpha_X) \leq -\varepsilon.$

Otherwise, the *Bookie*'s previsions are *incoherent*₁.

The net outcome *O* is just another random variable.

The *Bookie*'s *coherent*₁ previsions do not allow the *Gambler* contracts where the *Bookie*'s net-payoff is uniformly dominated by *Abstaining*.



Coherence₂: de Finetti's (1974) Forecasting Game (with Brier Score)

There is only the one player in the *Forecasting Game*, the *Forecaster*.

The *Forecaster* – who, for random variable X in χ announces a real-valued *forecast* F(X), subject to a squared-error loss outcome.

In state ω , the *Forecaster* is penalized $-[X(\omega) - F(X)]^2 = O_{\omega}(X, F(X))$.

The *Forecaster*'s net score in state ω from forecasting finitely variables { $F(X_i)$: i = 1, ..., k} is the sum of the *k*-many individual losses

$$\sum_{i=1}^{k} O_{\omega}(X, F(X_{i})) = \sum_{i=1}^{k} -[X_{i}(\omega) - F(X_{i})]^{2} = O(\omega).$$

*Coherence*₂: The *Forecaster*'s forecasts { $F(X): X \in \chi$ } are *coherent*₂ provided that there is no finite set of variables, { $X_1, ..., X_k$ } and set of rival forecasts { $F'(X_1), ..., F'(X_k)$ } that yields a uniform smaller net loss for the *Forecaster* in each state.

$$\neg \exists (\{F'(X_{i}), ..., F'(X_{k})\}, \varepsilon > 0), \forall \omega \in \Omega$$

$$\sum_{i=1}^{k} -[X_{i}(\omega) - F(X_{i})]^{2} \leq \sum_{i=1}^{k} -[X_{i}(\omega) - F'(X_{i})]^{2} - \varepsilon.$$

Otherwise, the *Forecaster*'s forecasts are *incoherent*₁.

The *Forecaster*'s *coherent*₂ previsions do not allow rival forecasts that uniformly dominate in Brier Score (i.e., squared-error).

Theorem (de Finetti, 1974):

A set of previsions $\{P(X)\}$ is *coherent*₁.

if and only if

The same *forecasts* {F(X): F(X) = P(X)} are coherent₂.

if and only if

There exists a (finitely additive) probability P such that these quantities are the P-Expected values of the corresponding variables

 $\mathbf{E}_{\mathbf{P}}[X] = \mathbf{F}(X) = \mathbf{P}(X).$

<u>Corollary</u>: When the variables are 0-1 indicator functions for events, A, $I_A(\omega) = 1$ if $\omega \in A$ and $I_A(\omega) = 0$ if $\omega \notin A$, then de Finetti's theorem asserts:

Coherent prices/forecasts must agree with the values of a (finitely additive) probability distribution over these same events. Otherwise, they are incoherent.

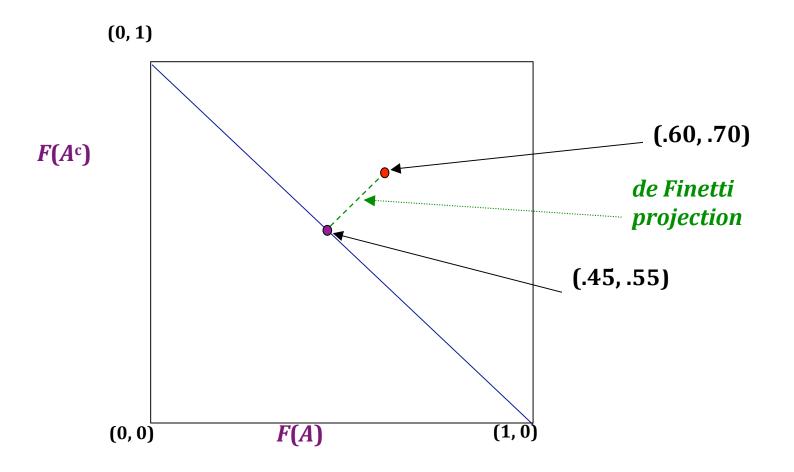
Example:

A Bookie's two previsions, {P(A)=.6; $P(A^c)=.7$ }, are incoherent₁ The *Bookie* has overpriced the two variables.

A *Book* is achieved against these previsions with the *Gambler*'s strategy $\alpha_A = \alpha_{A^c} = 1$, requiring the *Bookie* to buy each variable at the announced price.

The net payoff to the *Bookie* is -0.3 regardless which state ω obtains.

In order to see that these are also *incoherent*₂ forecasts, review the following diagram



Three contrasts between two senses of coherent preferences – Statistics, LMU Munich 2011

If the forecast previsions are not coherent₁, they lie outside the probability simplex. Project these incoherent₁ forecasts into the simplex. As in the *Example*, (.60, .70) projects onto the coherent₁ previsions depicted by the point (.45, .55). By elementary properties of Euclidean projection, the resulting coherent₁ forecasts are closer to each endpoint of the simplex. Thus, the projected forecasts have a dominating Brier score regardless which state obtains. This establishes that the initial forecasts are incoherent₂. Since no coherent₁ forecast set can be so dominated, we have coherence₁ of the previsions if and only coherence₂ of the corresponding forecasts.

Background on Coherence and Elicitation

De Finetti's interest in *coherence*₂, avoiding dominated forecasts under squared-error loss (Brier Score), was prompted by an observation due to Brier (1950).

<u>Theorem</u> (Brier, 1950) A SEU forecaster whose forecasts are scored by squared error loss in utility units, (uniquely) maximizes expected utility by announcing her/his expected value for each forecast variable.

• Brier Score is a (strictly) proper scoring rule.

That is, squared error loss provides the incentives for an SEU forecaster to be entirely straightforward with her/his forecasts.

A moment's reflection establishes that wagering, as in the *Prevision Game*, does <u>not</u> ensure the right incentives are present for the *Bookie* always to announce her/his expected $E_P(X)$ value as the "fair price" P(X) for variable *X*.

Suppose that the *Bookie* has an opinion about the *Gambler*'s fair betting odds on an event, *A*. Suppose the Bookie believes: $E_P[I_A] < E_P[I_A]$.

Then it is strategic for the Bookie to announce a prevision:

 $\mathbf{E}_{P}[I_{A}] < P(A) < \mathbf{E}_{P}[I_{A}].$

The 1st contrast between two senses of coherence: *infinitely many previsions/forecasts at once.*

(1) Recall that de Finetti's coherence criteria require that the **Bookie/Forecaster** respects dominance only with respect to random variables created by *finite* combinations of fair-gambles/forecasts. (2) Also, for infinite Ω , de Finetti restricted the dominance principle to require that the dominating option has *uniformly better* outcomes: better in each state $\omega \in \Omega$ by at least some fixed amount, $\varepsilon > 0$. Why these twin restrictions on the simple dominance principle? The answer is because de Finetti (like, e.g., Savage) made room under a **Big Tent of coherent preferences for finitely (but not necessarily** countably) additive probabilities.

Example 1 (de Finetti, 1949).

Let $\Omega = \{\omega_1, ..., \omega_n, ...\}$ be a denumerably infinite partition of "equally probable" states. *Bookie*'s previsions are $P(\{\omega_i\}) = 0, i = 1, ...$

The *Bookie* judges *fair* each gamble of the form $\alpha_i(I\omega_i - 0)$. Thus, *Bookie*'s personal probability is strongly finitely additive, as

 $0 = \sum_{i} \mathbf{P}(\{\omega_i\}) < \mathbf{P}(\bigcup_{i} \{\omega_i\}) = \mathbf{P}(\Omega) = 1.$

These are coherent₁ previsions, by de Finetti's *Theorem*.

However, if the *Gambler* is allowed to engage in more than finitely many contracts at a time, even assuring that the net-outcome is finite and bounded in every state, there is a simple strategy that causes the *Bookie* to suffer a uniform (sure) loss.

Set $\alpha_i = -1$. Then, $\forall \omega \in \Omega$, $\Sigma_i \alpha_i (I_{\omega_i}(\omega) - \mathbf{0}) = -\Sigma_i I_{\omega_i}(\omega) = -1$.

De Finetti noted: a sure-loss obtains in this fashion if and only if the *Bookie*'s previsions are not countably additive.

However, no such failure of dominance results by combining infinitely many forecasts, provided that the *Forecaster*'s expected score is finite. Assume that expectations for sums of the random variables to be forecast, and also for their squares, are *absolutely convergent*:

$$E_{P}[\sum_{i} |X_{i}|] \leq V < \infty$$
(1)
$$E_{P}[\sum_{i} X_{i}^{2}] \leq W < \infty.$$
(2)

Proposition 1: Let $\chi = \{X_i, i = 1...\}$ be a class of variables and P a finitely additive probability satisfying conditions (1) and (2), with coherent₂ forecasts $E_P[X_i] = p_i$.

There does not exist a set of real numbers $\{q_i\}$ such that

$$\forall \omega \in \Omega, \ \sum_{i} (p_i - X_i(\omega))^2 - \sum_{i} (q_i - X_i(\omega))^2 > 0.$$

Corollary: When conditions (1) and (2) obtain, the infinite sum of Brier scores applied to the infinite set of forecasts $\{p_i\}$ is a strictly proper scoring rule.

Proposition 1 and its *Corollary* establish that the two senses of coherence are *not* equivalent when considering finitely additive probabilities and infinite sets of previsions/forecasts.

Assume the finiteness conditions (1) and (2).

Coherence₁, associated with the *Prevision Game*, depends upon the requirement that only finitely many *fair* contracts may be combined at once while permitting finitely (but not countably) additive probabilities to be *coherent*.

Coherence₂, associated with the *Forecasting Game*, has no such restrictions for combining infinitely many forecasts. Moreover, Brier score retains its status as a strictly proper scoring rule even when infinitely many variables are forecast simultaneously.

• Contrast #1 favors Coherence₂ over Coherence₁ !

The 2nd contrast between two senses of coherence: *moral hazard*.

Consider the following case of simple dominance between two acts.

	ω_1	ω_2
A_1	3	1
A_2	4	2

Act A_2 simply dominates act A_1 .

However, if there is *moral hazard* – act-state probabilistic dependence, then A_1 may maximize subjective (conditional) expected utility, not A_2 . For example, consider circumstances where $P(\omega_i | A_i) \approx 1$, for i = 1, 2.

Then, $SE_{A_1}U(A_1) \approx 3 > 2 \approx SE_{A_2}U(A_2).$

The agent strictly prefers A_1 over A_2 .

• With moral hazard, *simple dominance* is not compelling.

However, there is a more restrictive version of dominance that is robust against the challenge of *moral hazard*.

Consider two acts A_1, A_2 defined by the their outcomes relative to Ω .

	ω_1	ω_2	ω ₃	• • •	ω_n
A_1	<i>0</i> ₁₁	<i>o</i> ₁₂	<i>0</i> ₁₃	•••	o_{1n}
A_2	<i>o</i> ₂₁	<i>0</i> ₂₂	<i>0</i> ₂₃	•••	O_{2n}

Suppose the agent can compare the desirability of *all* pairs of different outcomes. The agent can compare outcome o_{ij} and o_{kl} for all pairs, and ranks them in some (strict) weak order \blacktriangleleft .

Say that A_2 <u>robustly dominates</u> A_1 with respect to Ω when,

 $\blacktriangleleft - max_{\Omega} \{ o_{1j} \} \ \blacktriangleleft \ - min_{\Omega} \{ o_{1j} \}.$

The \triangleleft -best of all possible outcomes under A_1 is strictly \triangleleft -dispreferred to the \triangleleft -worst of all possible outcomes under A_2

• It is immediate that *Robust Dominance* accords with SEU even in the presence of (arbitrary) moral hazards.

Proposition 2: Each instance of incoherence₁, but not of incoherence₂, is a case of *Robust Dominance*.

Abstaining is strictly preferred to Book regardless of moral hazard.

But the same incoherent₂ forecast, though dominated in Brier score by a rival forecast, may have greater expected utility than that dominating rival forecast when there is moral hazard connecting forecasting and the states forecast. *Example 2*: The *bookie* is asked for a pair of *fair* betting odds, one for an event R and one for its complement R^{c} .

The same agent forecasts the same pair of events subject to Brier score. The pair P(R) = .6 and $P(R^c) = .9$ are incoherent in both of de Finetti's senses, since $P(R) + P(R^c) = 1.5 > 1.0$.

For demonstrating incoherence₁, the *gambler* chooses $\alpha_R = \alpha_R c = 1$, which produces a sure-loss of -0.5 for the *bookie*.

That is, $1(I_R(\omega) - .6) + 1(I_{Rc}(\omega) - .9) = -0.5 < 0$ in each state, $\omega \in \Omega$. Hence, *Abstaining* from betting, with a constant payoff 0, *robustly dominates* the sum of these two *fair* bets in the partition by states Ω . The *Forecaster* announces F(R) = .60 and $F(R^c) = .90$. For demonstrating incoherence₂, consider the rival coherent forecasts Q(R) = .35 and $Q(R^c) = .65$,

the de Finetti projection of the point (.6, .9) into the coherent simplex.

For states $\omega \in R$,

the Brier score for the two *F*-forecasts is $(1-.6)^2 + (0-.9)^2 = .970$ the Brier score for the rival *Q*-forecasts is $(1-.35)^2 + (0-.65)^2 = .845$.

For states $\omega \notin R$,

the Brier score for the two **F**-forecasts is $(0-.6)^2 + (1-.9)^2 = .370$

the Brier score for the rival Q-forecasts is $(0-.35)^2 + (1-.65)^2 = .245$.

The Brier score for the rival *Q*-forecasts (.35, .65) *simply dominates*, but does <u>not</u> *robustly dominate* the Brier score for the *F*-forecasts (.6, .9) in the partition by states Ω.

Consider a case of moral hazard in betting, or in forecasting, as before:

Let the moral hazards associated with betting be any which way at all!

Conditional on making the incoherent₂ **F**-forecasts (.6, .9), the agent's conditional probability for event R^c is nearly 1.

But conditional on making the rival (coherent) Q-forecasts (.35, .65) the agent's conditional probability for R is nearly 1.

Then it remains the case that given the incoherent₁ pair of betting odds (.6, .9), the *bookie* has a negative conditional expected utility of -0.5 when the *gambler* chooses $\alpha_R = \alpha_{R^c} = 1$, regardless the moral hazards relating betting with the events wagered.

Offering those incoherent₁ betting odds remains strictly dispreferred to *Abstaining*, which has conditional expected utility 0 even in this case of extreme moral hazard. *Abstaining* robustly dominates a *Book*.

However, with the assumed moral hazards for forecasting:

The conditional expected loss under Brier score given the incoherent₂ *F*-forecast pair (.6, .9) is nearly .370.

The conditional expected loss under Brier score given the rival coherent and dominating Q-forecast pair (.35, .65) is nearly .845.

That is, though the rival coherent₂ Q-forecast pair (.35, .65) simply dominates the incoherent₂ F-forecast pair (.6, .9) in combined Brier score, as this is <u>not</u> a case of *robust dominance*, with moral hazard it may be the that incoherent₂ forecast is strictly preferred.

With these moral hazards, each rival Q'-forecast that simply dominates the incoherent₂ F-forecast pair (.6, .9) has <u>lower</u> conditional expected utility and is dispreferred to the incoherent₂ F-forecasts.

• Contrast #2 favors Coherence₁ over Coherence₂ !

A 3rd contrast between two senses of coherence: *state-dependent utility*.

Assume that there are no *moral hazards*: states are probabilistically independent of acts.

Begin with a trivial result about equivalent SEU representations.

Suppose an SEU agent's > preferences over acts on $\Omega = \{\omega_1, ..., \omega_n\}$ is represented by prob/state-dependent utility pair (*P*; *U_j*: *j* = 1, ..., *n*).

	ω_1	ω_2	ω ₃	•••	ω_n
A_1	<i>o</i> ₁₁	<i>o</i> ₁₂	<i>o</i> ₁₃	•••	o_{1n}
A_2	<i>o</i> ₂₁	<i>0</i> ₂₂	<i>0</i> ₂₃	•••	O_{2n}

 $A_2 > A_1$ if and only if $\sum_j P(\omega_j)U_j(o_{2j}) > \sum_j P(\omega_j)U_j(o_{1j})$.

Let Q be a probability on Ω that agrees with P on null events: $P(\omega) = 0$ if and only if $Q(\omega) = 0$. Let U'_j be defined as $c_j U_j$, where $c_j = P(\omega_j)/Q(\omega_j)$. (*Trivial Result*) Proposition 3: (D: U) represents if = if and each if (Ω : U') represents if

 $(P; U_j)$ represents > *if and only if* $(Q; U'_j)$ represents >.

Example 3: The de Finetti *Prevision Game* for a single event *G*. For simplicity, let $\Omega = \{\omega_1, \omega_2\}$ with $G = \{\omega_1\}$.

Suppose that, when betting in US dollars, \$, the *Bookie* posts fair odds $P^{\$}(G) = 0.5$, so that she/he judges as *fair* contracts of the form $\$\alpha(I_G - .5)$.

Suppose that, when betting in Euros, \in , the same *Bookie* posts fair odds $P^{\notin}(G) = 5/11 = 0.\overline{45}$, so that she/he judges as *fair* contracts of the form $\notin \alpha(I_G - 5/11)$.

- Is the *Bookie* coherent₁? *Answer*: YES!
- Why do the *Bookie*'s previsions depend upon the currency?

Answer: Because the *Bookie*'s currency valuations are state-dependent!

In state ω_1			In state ω_2
€1 = \$1.25	5		€1 = \$1.50
	ω_1	ω_2	
D_1	\$1	\$0	
D_2	\$0	\$1	

The *Bookie* is indifferent between acts D_1 and D_2 since she/he has \$-fairbetting rates of $\frac{1}{2}$ on each state.

So, then the *Bookie* is indifferent between acts E_1 and E_2

	ω_1	ω_2	
E_1	€0.80	€0	
E_2	€0	€0.67	

which mandates \notin -fair betting rates of 5/11:6/11 on $\omega_1:\omega_2$.

Aside: The *Bookie* has a fair currency exchange rate of $\in 1 =$ \$1.375.

But by the *Trivial Result* – there is no way to separate fair-odds (degrees of belief) from currency (utility values) based on coherent betting odds!

One $(\$P, U_j)$ pair uses a state-independent utility for Dollars and a state dependent utility for Euros.

One $(\in Q; U'_j)$ pair uses a state-independent utility for Euros and a state dependent utility for Dollars.

• Fixing coherent personal probabilities in the *Prevision Game* does <u>not</u> allow a separation of beliefs from values.

What is the situation in the Forecasting Game?

What happens to the agent's coherent₂ forecasts when Brier score is made operational in Dollar units, rather than in Euro units?

Does propriety of squared-error loss resolve which is the *Forecaster*'s *real* degrees of belief

The answer is that the *Trivial Result* applies to <u>all</u> decisions over a set of acts, including those in the *Forecasting Game*.

When scored in Dollars, the coherent₂ *Forecaster* will maximize expected utility by offering forecasts corresponding to the $(\$P, U_j)$ pair, which uses a state-independent utility for Dollars and a state dependent utility for Euros.

When scored in Euros, the coherent₂ *Forecaster* will maximize expected utility by offering forecasts corresponding to the $(\in Q; U'_j)$ pair, which uses a state-independent utility for Euros and a state dependent utility for Dollars.

Neither the *Prevision Game* nor the *Forecasting Game* solves the problem posed by the *Trivial Result*, the problem of separating beliefs from values based on preferences over acts.

• Contrast #3 favors *neither* Coherence₁ nor Coherence₂. Both fail !!

Summary

In three different contrasts between de Finetti's two senses of coherence, we have these varying results:

- #1: Coherence₁ *Previsions* immune to Book <u>does not</u>, but Coherence₂ – *Forecasting* subject to Brier score – <u>does</u>
 permit the infinite combinations of previsions/forecasts that are separately coherent when these arise from a (merely) f.a. probability.
- #2: Coherence₂ *Forecasting* subject to Brier score <u>does not</u>, but Coherence₁ – *Previsions* immune to Book – <u>does</u>
 permit arbitrary cases of *moral hazard*.
- #3: Neither Coherence₁ *Previsions* immune to Book, Nor Coherence₂ – undominated *Forecasts* according to Brier score,
 solves the challenge posed by the *Trivial Result* for separating beliefs
 from values based on preferences over acts.

A few references

- Brier, G.W. (1950) Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review 78: 1-3.
- de Finetti, B. (1937) Foresight: Its Logical Laws, Its Subjective Sources. (translated by H.E.Kyburg Jr.) in Kyburg and Smokler (eds.) *Studies in Subjective Probability*. 1964 New York: John Wiley, pp. 93-158.
- de Finetti, B (1949) On the Axiomatization of Probability, reprinted as Chapter 5 in *Probability, Induction, and Statistics* (1972) New York: John Wiley.
- de Finetti, B (1974) Theory of Probability, vol. 1 New York: John Wiley.
- Schervish, M.J., Seidenfeld, T., and Kadane, J.B. (2011) The Effect of Exchange Rates on Statistical Decisions. Dept. of Statistics, CMU.
- Seidenfeld, T., Schervish, M.J., and Kadane, J.B. (2011) Dominating Countably Many Forecasts. Dept. of Statistics, CMU.