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• A Brief Look at the First Talk

• The Technical Argument Condensed

• Some Results on Direct Correction In the Poisson Model

3. Overcoming the Dogma of Ideal Precision in Deficiency Models

3.1 Credal Deficiency Model as Imprecise Measurement Error Models
3.2 Credal Consistency of Set-Valued Estimators
3.3 Minimal and complete Sets of Unbiased Estimating Functions
3.4 Some Examples

Thomas Augustin, LMU Research Seminar, 5 May 2010 2



dependent
variable Yi

� effects �
independent
variable Xi

? ?

? ?

6

data - inference � data

error model error model

proxy variable Y ∗i proxy variable X∗i

Thomas Augustin, LMU Research Seminar, 5 May 2010 3



Y ∈ Y � ϑ = (βT , νT )T

[Y |X;ϑ]

X ∈ X

?

[Y ∗|X,Y ]

?

[X∗|X,Y ]

Y ∗ ∈ X ∗ X∗ ∈ X ∗

? ?

6

y∗1, . . . , y
∗
n x∗1, . . . , x

∗
n

Thomas Augustin, LMU Research Seminar, 5 May 2010 4



The triple whammy effect of measurement error
Carroll, Ruppert, Stefanski, Crainiceanu (2006, Chap.H.)

– bias

– masking of features

– loss of power

• classical error: ”attenuation ”
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Terminology

continuous variables discrete variables
↓ ↓

measurement error misclassification
↓ ↓

error Ui
↙ ↓ ↘ ↘ ↙

classical Berkson Rounding Anonymization
meas. error error Heaping Techniques
Xi ⊥ Ui X∗i ⊥ Ui
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2. Measurement Error Correction based on Precise Error Models

2.1 Measurement Error Modelling

2.2 Unbiased Estimating Equations and Corrected Score Functions for
Classical Measurement Error (in the Cox Model)

2.3 Extended Corrected Score Functions - A Unified View at Measurement
Error and Censoring

2.4 Corrected Score Functions for Berkson Models

(2.5) (Unconditionally Corrected Score Functions and Rounding) (Felderer)
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The Technical Argument
Condensed
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On the construction of unbiased estimating equations:

• ϑ0 true parameter value

• Ideal estimating function: ψX,Y (X,Y, ϑ)

• Naive estimating function: ψsic! X,Y (X∗,Y∗, ϑ)

• Find ψX
∗,Y ∗(X∗,Y∗, ϑ) such that

Eϑ0

(
ψX

∗,Y ∗(X∗,Y∗, ϑ)
)

!
= 0 (∗)

• Idea: use the ideal score function as a building block!

• Try ψX
∗,Y ∗(X∗,Y∗, ϑ) = f(ψX,Y (X∗,Y∗, ϑ)) for some appropriate f(·)
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• In general, ψ
X∗,Y ∗(·) can not be determined directly.

• Note that, since Eϑ0

(
ψX,Y )(X,Y, ϑ)

)
= 0, (∗) is equivalent to

Eϑ0

(
ψX

∗,Y ∗(X∗,Y∗, ϑ)
)

= Eϑ0

(
ψX,Y (X,Y∗, ϑ)

)

• Look at the expected difference between ψX
∗,Y ∗(·) and ψX,Y (·).

• Try to break ψX,Y (X,Y, ϑ) into
”
additive pieces“, and do it piece by

piece

• Typically, ψ(·) has the form

ψ(X,Y, ϑ) =
1

n

n∑
i=1

ψi(Xi, Yi, ϑ),
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and there are representations such that, for i = 1, . . . , n,

ψi(Xi, Yi, ϑ) =

s∑
j=1

gj(Xi, Yi, ϑ).

• Then try to find f1(·), . . . , fs(·) such that

Eϑ0 (fj(gj(X
∗
i ,Y

∗
i , ϑ))) = Eϑ0 (gj(Xi,Yi, ϑ)) (∗∗)
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• (conditionally/locally) corrected score functions (Nakamura (1990,
Biometrika), Stefanski (1989, Comm. Stat. Theory Meth.))

• Try to find f1(·), . . . , fs(·) such that

Eϑ0 (fj(gj(X
∗
i ,Y

∗
i , ϑ))|Xi,Yi) = gj(Xi,Yi, ϑ) (∗∗),

then the law of iterated expectation leads to (*).
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• Sometimes indirect proceeding: corrected log-likelihood lX
∗
(Y,X, ϑ)

with
E(lX

∗
(Y,X∗, ϑ)|X,Y) = lX(Y,X, ϑ).

or
E
(

lX
∗
(Y,X∗, ϑ)

)
= E

(
lX(Y,X, ϑ)

)
.

• Same techniques as before

* piece by piece
* globally or locally

• Under regularity conditions unbiased estimating function by taking the
derivative with respect to ϑ.
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Some Results on Direct
Correction in the Poisson Model
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Berkson Error II: A Direct Correction for the Poisson
Model under a Linear Error Structure

• Ideal score function:

E (XiYi −Xi exp(Xiβ)) = 0

• Naive score function:

E (X∗i Yi −X∗i exp(X∗i β)) = 0

• Show that there is a, c ∈ R such that

E (aX∗Yi + c · exp(X∗β)−X∗i exp(X∗i β)) = 0
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E(aX∗Yi) = E (E(aX∗i Yi|Xi)) =

= a · E (E(X∗i |Xi) · E(Yi|Xi))

Here an important difference occurs between the Berkson model and a
rounding model. In the latter case E(X∗i |Xi) = X∗i by definition, in
the former case assume a linear error structure such that E(X∗i |Xi) =
γ0 + γ1Xi; E(X∗i + Ui|Xi) = Xi + E(U |Xi)
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Then, for the Berkson model,

E(aX∗Yi) = a · E ((γ1Xi + γ0) · exp(Xiβ)) =

= a · E (γ1Xi exp(Xiβ) + γ0 exp(Xiβ)) =

= a · E (γ1(X∗i + Ui) exp ((X∗i + Ui)β) + γ0 exp ((X∗i + Ui)β)) =

= a · (E (γ1X
∗
i exp(X∗i β) · exp(Uiβ)+

+ γ1 · Ui · exp(Uiβ) · exp(X∗i β) +

+ γ0 exp(X∗i β) · exp(Uiβ)))

Note that here X∗ and U are independent.
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Therefore

E(aX∗Yi) = a · γ1 (E(exp(Uiβ)) · E (X∗i exp(X∗i β)) +

+E (Ui exp(Uiβ)) · E (exp(X∗i β))) +

+aγ0E(exp(Uiβ)) · E (exp(X∗i β))

• First condition

aγ1E(U exp(Uβ)) + aγ0E(exp(Uβ)) + c = 0

(Note that γ1 and γ0 are fixed, not to be chosen.)

• Second condition

a · γ1E(exp(Uβ))E(X∗i exp(X∗i β))− E (X∗i exp (X∗i β))
!
= 0

• a = − (γ1 · E(exp(Uβ)))
−1

c = −aγ1E(U exp(Uβ))− aγ0E(exp(Uβ)) =
E(U exp(Uβ))

E(exp(Uβ))
− 1

γ1
· γ0
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A Direct Correction for Rounding in the Poisson Model

E(X∗i |Xi) = X∗i , and therefore

E(aX∗i Yi) = aE(X∗i · exp(Xiβ)) =

= aE (E(X∗i · exp(Xiβ)|X∗i )) =

= aE (E (X∗i · exp ((X∗i + Ui)β|X∗i ))) =

= aE (X∗i exp(X∗i ))E(exp(Uiβ|X∗i ))

a = (E (exp (Uiβ)|X∗i ))
−1
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3. Overcoming the Dogma of
Ideal Precision in Deficiency

Models
3.1 Credal Deficiency Model as Imprecise Measurement Error

Models
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

”The credibility of inference decreases with the strength of the as-
sumptions maintained.” (Manski (2003, p. 1))
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

”The credibility of inference decreases with the strength of the as-
sumptions maintained.” (Manski (2003, p. 1))

Identifying Assumptions Very strong assumptions needed to ensure iden-
tifiability = precise solution

• Measurement error model completely known

- type of error, in particular assumptions on (conditional) independence
- type of error distribution
- moments of error distribution

• validation studies often not available
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Reliable Inference Instead of Overprecision!

• Make more
”
realistic“ assumption and let the data speak for themselves!

• Consider the set of all models that maybe compatible with the data
(and then add successively additional assumptions, if desirable)
• The results may be imprecise, but are more reliable for sure
• The extend of imprecision is related to the data quality!
• As a welcome by-product: clarification of the implication of certain

assumptions
• parallel developments (missing data; transfer to measurement error con-

text!)
* economics: partial identification: e.g., Manski (2003, Springer)
* biometrics: systematic sensitiviy analysis: e.g., Vansteelandt, Goet-

ghebeur, Kenword, Molenberghs (2006, Stat. Sinica)
• current developments, e.g.,

* Cheng, Small (2006, JRSSB)
* Henmi, Copas, Eguchi (2007, Biometrics)
* Stoye (2009, Econometrica)

• Kleyer (2009, MSc.); Kunz, Augustin, Küchenhoff (2010, TR)

Thomas Augustin, LMU Research Seminar, 5 May 2010 25



How to proceed with a set of results ?

• Imprecise probabilities (IP)

* Roughly speaking: probabilistic modelling with sets of models: credal
sets

* Walley (1991, Chapman & Hall), Weichselberger (2001, Physika),
Augustin, Coolen, de Cooman, Troffaes (eds., 2009, Proc ISIPTA’09)

* Generalized asymptotics: Fierens, Rego, Fine (2008, JSPI), de
Cooman, Miranda (2008, JSPI), Cozman (2010, IJAR)

• Construction of unbiased sets of estimating functions

• Credal consistency
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Some promising development in IP

• IP approaches for handeling coarsened or missing data: de Comman,
Zaffalon (2004, AI), Utkin, Augustin (2007, IJAR)

• Technical handling by generalized BPAs: Miranda, de Cooman, Couso
(2004, JSPI), Augustin (2005, IJGS), Coolen, Augustin (2009, IJAR)

• ”Soft independence” with given marginals: e.g., Held H., Augustin,
Kriegler (2008, IJAR)

• Asymptotics for IP: Fierens, Rego, Fine (2008, JSPI), de Cooman,
Miranda (2008, JSPI), Cozman (2010, IJAR)

• Strong relationship to robust statistics: Augustin, Hable (2010, Struct.
Safety)

• And to robust Bayesian analysis: e.g., Walter, Augustin (2009a, JSTP;
2009b, Fests. Fahrmeir)
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Credal Estimation

• Natural idea: sets of traditional models −→ sets of traditional estimators

• Construct estimators Θ̂ ⊆ Rp, set appropriately reflecting the ambiguity
(non-stochastic uncertainty, ignorance) in the credal set P.

• Θ̂ small if and only if (!) P ”small”

* Usual point estimator as the border case of precise probabilistic infor-
mation

* Connection to Manski’s (2003) identification regions and Vanstee-
landt, Goetghebeur, Kenward & Molenberghs (Stat Sinica, 2006)
ignorance regions.

• Construction of unbiased sets of estimating functions

• Credal consistency
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Y ∈ Y � ϑ = (βT , νT )T

[Y |X;ϑ]

X ∈ X

?
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[X∗|X,Y ]

Y ∗ ∈ X ∗ X∗ ∈ X ∗
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6
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∗
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∗
n

π(X,ϑ; ζ)
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Credal Deficiency Models

Different types of deficiency can be expressed

• Measurement error problems

• Misclassification

• If Y∗ j P(Y)× {0, 1} : coarsening, rounding, censoring, missing data

• Outliers

credal set: convex set of traditional probability distributions

[Y |X,ϑ] ∈ PY |X,ϑ
[Y ∗|X,Y ] ∈ PY ∗|X,Y ∈ PY |Y ∗,X
[X∗|X,Y ] ∈ PX∗|X,Y ∈ PX|X∗, Y
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3.2 Credal Consistency

•
(

Θ̂(n)
)
n∈N
⊆ Rp is called credally consistent (with respect to the credal

set Pϑ) if ∀ϑ ∈ Θ :

∀p ∈ Pϑ ∃
(
ϑ̂(n)
p

)
n∈N
∈
(

Θ̂(n)
)
n∈N

: plim
n→∞

ϑ̂(n)
p = ϑ.

• A credally consistent estimator Θ̂(n) is called minimally credally consis-

tent if there is no credally consistent estimator
̂̂
Θ

(n)

⊂ Θ̂(n).
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3.3 Construction of Minimal Credally Consistent
Estimators

• Transfer the framework of unbiased estimating functions

• A set Ψ of estimating functions is called

* unbiased (with respect to the credal set Pϑ) if for all ϑ:

∀ψ ∈ Ψ ∃pψ,ϑ ∈ Pϑ : Epψ,ϑ(Ψ) = 0

* complete (with respect to the credal set Pϑ) if for all ϑ:

p ∈ Pϑ ∃ψp,ϑ ∈ Ψ : Ep(ψp,ϑ) = 0.

• A complete and unbiased set ψ of estimating functions is called minimal
if there is no complete and unbiased set of estimating functions Ψ̃ ⊂ Ψ.
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Construction of Minimal Consistent Estimators

Define for some set Ψ of estimating functions

Θ̂Ψ =
{
ϑ̂
∣∣∣ ϑ̂ is root of ψ, ψ ∈ Ψ

}
.

Under the usual regularity conditions (in particular unit root for every ψ)

• Ψ unbiased and complete ⇒ Θ̂Ψ credally consistent

• Ψ minimal ⇒ Θ̂Ψ minimally credally consistent
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3.4 Examples

• Imprecise sampling model : neighborhood model PY |X,ϑ around some
ideal central distribution pY |X,ϑ
Let ψ be an unbiased estimation function for pY |X,ϑ. Then (if well
defined)

Ψ =
{
ψ∗|ψ∗ = ψ − Ep(ψ), p ∈ PY |X,ϑ

}
is unbiased and complete.

• Imprecise measurement error model, e.g. PX∗|X,Y :
Ψ =

{
ψ|ψ is corrected score function for some p ∈ PX∗|X,Y

}
is unbi-

ased and complete.

• Construction of confidence regeions:

* union of traditional confidence regions
* can often be improved (Vansteelandt, Goetghebeur, Kenward & Molen-

berghs (Stat Sinica, 2006), Stoye (2009, Econometrica)).

Thomas Augustin, LMU Research Seminar, 5 May 2010 35
















